Structural basis for selective GABA binding in bacterial pathogens
Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2012-12, Vol.86 (5), p.1085-1099 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1099 |
---|---|
container_issue | 5 |
container_start_page | 1085 |
container_title | Molecular microbiology |
container_volume | 86 |
creator | Planamente, Sara Mondy, Samuel Hommais, Florence Vigouroux, Armelle Moréra, Solange Faure, Denis |
description | Summary
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions. |
doi_str_mv | 10.1111/mmi.12043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257742690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827541561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</originalsourceid><addsrcrecordid>eNqN0VtPFDEUB_DGaGRBHvwCZhJDAg8DbU-vjwuRhWTRGAV8azrdDhbnsrYzXL49hV0wMTGxL335nXPa80foPcH7JJ-Dtg37hGIGr9CEgOAl1Vy9RhOsOS5B0R8baDOla4wJYAFv0QaFjIHSCTr8NsTRDWO0TVHZFFJR97FIvvFuCDe-mE0Pp0UVukXororQZeMGH0PWSzv87K98l96hN7Vtkt9e31vo_PjT96OTcv5ldno0nZeOKQ0lt94KRisimAAsQVmpca0XmlhdqfwcTSQHILrClDrPhGaV05wpCZWlqoYttLvqu4z979GnwbQhOd80tvP9mAyhXEpGhcb_QSnmEmsQmX78i173Y-zyR56U4MAEzWpvpVzsU4q-NssYWhvvDcHmMQOTMzBPGWT7Yd1xrFq_eJHPS89gZw1scrapo-1cSH-cyBvShGV3sHK3ofH3_55ozs5On0eXq4qQBn_3UmHjLyMkSG4uP88MUxf6qxTKzOEBuI6oCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220653462</pqid></control><display><type>article</type><title>Structural basis for selective GABA binding in bacterial pathogens</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</creator><creatorcontrib>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</creatorcontrib><description>Summary
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12043</identifier><identifier>PMID: 23043322</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Agrobacterium tumefaciens ; Agrobacterium tumefaciens - chemistry ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Agrobacterium tumefaciens - pathogenicity ; Azospirillum ; Bacteria ; Bacterial proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Binding sites ; Biological and medical sciences ; Burkholderia ; Crystallography, X-Ray ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; gamma-Aminobutyric Acid - metabolism ; Gene Expression Regulation, Bacterial ; Host-Pathogen Interactions ; Microbiology ; Miscellaneous ; Mutation ; Nicotiana - microbiology ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Plant Diseases - microbiology ; Protein Binding ; Protein Structure, Tertiary ; Proteobacteria ; Pseudomonas ; Receptors, GABA - genetics ; Receptors, GABA - metabolism ; Rhizobium ; Signal transduction ; Solanum lycopersicum - microbiology ; Structure-Activity Relationship ; Transcriptome</subject><ispartof>Molecular microbiology, 2012-12, Vol.86 (5), p.1085-1099</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</citedby><cites>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26646914$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23043322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Mondy, Samuel</creatorcontrib><creatorcontrib>Hommais, Florence</creatorcontrib><creatorcontrib>Vigouroux, Armelle</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Faure, Denis</creatorcontrib><title>Structural basis for selective GABA binding in bacterial pathogens</title><title>Molecular microbiology</title><addtitle>Molecular Microbiology</addtitle><description>Summary
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</description><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - chemistry</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Agrobacterium tumefaciens - pathogenicity</subject><subject>Azospirillum</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Burkholderia</subject><subject>Crystallography, X-Ray</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Host-Pathogen Interactions</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mutation</subject><subject>Nicotiana - microbiology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phylogeny</subject><subject>Plant Diseases - microbiology</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteobacteria</subject><subject>Pseudomonas</subject><subject>Receptors, GABA - genetics</subject><subject>Receptors, GABA - metabolism</subject><subject>Rhizobium</subject><subject>Signal transduction</subject><subject>Solanum lycopersicum - microbiology</subject><subject>Structure-Activity Relationship</subject><subject>Transcriptome</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0VtPFDEUB_DGaGRBHvwCZhJDAg8DbU-vjwuRhWTRGAV8azrdDhbnsrYzXL49hV0wMTGxL335nXPa80foPcH7JJ-Dtg37hGIGr9CEgOAl1Vy9RhOsOS5B0R8baDOla4wJYAFv0QaFjIHSCTr8NsTRDWO0TVHZFFJR97FIvvFuCDe-mE0Pp0UVukXororQZeMGH0PWSzv87K98l96hN7Vtkt9e31vo_PjT96OTcv5ldno0nZeOKQ0lt94KRisimAAsQVmpca0XmlhdqfwcTSQHILrClDrPhGaV05wpCZWlqoYttLvqu4z979GnwbQhOd80tvP9mAyhXEpGhcb_QSnmEmsQmX78i173Y-zyR56U4MAEzWpvpVzsU4q-NssYWhvvDcHmMQOTMzBPGWT7Yd1xrFq_eJHPS89gZw1scrapo-1cSH-cyBvShGV3sHK3ofH3_55ozs5On0eXq4qQBn_3UmHjLyMkSG4uP88MUxf6qxTKzOEBuI6oCg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Planamente, Sara</creator><creator>Mondy, Samuel</creator><creator>Hommais, Florence</creator><creator>Vigouroux, Armelle</creator><creator>Moréra, Solange</creator><creator>Faure, Denis</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope></search><sort><creationdate>201212</creationdate><title>Structural basis for selective GABA binding in bacterial pathogens</title><author>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - chemistry</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Agrobacterium tumefaciens - pathogenicity</topic><topic>Azospirillum</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Burkholderia</topic><topic>Crystallography, X-Ray</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Host-Pathogen Interactions</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mutation</topic><topic>Nicotiana - microbiology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phylogeny</topic><topic>Plant Diseases - microbiology</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteobacteria</topic><topic>Pseudomonas</topic><topic>Receptors, GABA - genetics</topic><topic>Receptors, GABA - metabolism</topic><topic>Rhizobium</topic><topic>Signal transduction</topic><topic>Solanum lycopersicum - microbiology</topic><topic>Structure-Activity Relationship</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Mondy, Samuel</creatorcontrib><creatorcontrib>Hommais, Florence</creatorcontrib><creatorcontrib>Vigouroux, Armelle</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Faure, Denis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Planamente, Sara</au><au>Mondy, Samuel</au><au>Hommais, Florence</au><au>Vigouroux, Armelle</au><au>Moréra, Solange</au><au>Faure, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for selective GABA binding in bacterial pathogens</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Molecular Microbiology</addtitle><date>2012-12</date><risdate>2012</risdate><volume>86</volume><issue>5</issue><spage>1085</spage><epage>1099</epage><pages>1085-1099</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23043322</pmid><doi>10.1111/mmi.12043</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2012-12, Vol.86 (5), p.1085-1099 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_1257742690 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Agrobacterium tumefaciens Agrobacterium tumefaciens - chemistry Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - metabolism Agrobacterium tumefaciens - pathogenicity Azospirillum Bacteria Bacterial proteins Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Binding sites Biological and medical sciences Burkholderia Crystallography, X-Ray Eukaryotes Fundamental and applied biological sciences. Psychology gamma-Aminobutyric Acid - metabolism Gene Expression Regulation, Bacterial Host-Pathogen Interactions Microbiology Miscellaneous Mutation Nicotiana - microbiology Oligonucleotide Array Sequence Analysis Phylogeny Plant Diseases - microbiology Protein Binding Protein Structure, Tertiary Proteobacteria Pseudomonas Receptors, GABA - genetics Receptors, GABA - metabolism Rhizobium Signal transduction Solanum lycopersicum - microbiology Structure-Activity Relationship Transcriptome |
title | Structural basis for selective GABA binding in bacterial pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20selective%20GABA%20binding%20in%20bacterial%20pathogens&rft.jtitle=Molecular%20microbiology&rft.au=Planamente,%20Sara&rft.date=2012-12&rft.volume=86&rft.issue=5&rft.spage=1085&rft.epage=1099&rft.pages=1085-1099&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12043&rft_dat=%3Cproquest_cross%3E2827541561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220653462&rft_id=info:pmid/23043322&rfr_iscdi=true |