Structural basis for selective GABA binding in bacterial pathogens

Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2012-12, Vol.86 (5), p.1085-1099
Hauptverfasser: Planamente, Sara, Mondy, Samuel, Hommais, Florence, Vigouroux, Armelle, Moréra, Solange, Faure, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue 5
container_start_page 1085
container_title Molecular microbiology
container_volume 86
creator Planamente, Sara
Mondy, Samuel
Hommais, Florence
Vigouroux, Armelle
Moréra, Solange
Faure, Denis
description Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.
doi_str_mv 10.1111/mmi.12043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257742690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827541561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</originalsourceid><addsrcrecordid>eNqN0VtPFDEUB_DGaGRBHvwCZhJDAg8DbU-vjwuRhWTRGAV8azrdDhbnsrYzXL49hV0wMTGxL335nXPa80foPcH7JJ-Dtg37hGIGr9CEgOAl1Vy9RhOsOS5B0R8baDOla4wJYAFv0QaFjIHSCTr8NsTRDWO0TVHZFFJR97FIvvFuCDe-mE0Pp0UVukXororQZeMGH0PWSzv87K98l96hN7Vtkt9e31vo_PjT96OTcv5ldno0nZeOKQ0lt94KRisimAAsQVmpca0XmlhdqfwcTSQHILrClDrPhGaV05wpCZWlqoYttLvqu4z979GnwbQhOd80tvP9mAyhXEpGhcb_QSnmEmsQmX78i173Y-zyR56U4MAEzWpvpVzsU4q-NssYWhvvDcHmMQOTMzBPGWT7Yd1xrFq_eJHPS89gZw1scrapo-1cSH-cyBvShGV3sHK3ofH3_55ozs5On0eXq4qQBn_3UmHjLyMkSG4uP88MUxf6qxTKzOEBuI6oCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220653462</pqid></control><display><type>article</type><title>Structural basis for selective GABA binding in bacterial pathogens</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</creator><creatorcontrib>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</creatorcontrib><description>Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12043</identifier><identifier>PMID: 23043322</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Agrobacterium tumefaciens ; Agrobacterium tumefaciens - chemistry ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Agrobacterium tumefaciens - pathogenicity ; Azospirillum ; Bacteria ; Bacterial proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Binding sites ; Biological and medical sciences ; Burkholderia ; Crystallography, X-Ray ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; gamma-Aminobutyric Acid - metabolism ; Gene Expression Regulation, Bacterial ; Host-Pathogen Interactions ; Microbiology ; Miscellaneous ; Mutation ; Nicotiana - microbiology ; Oligonucleotide Array Sequence Analysis ; Phylogeny ; Plant Diseases - microbiology ; Protein Binding ; Protein Structure, Tertiary ; Proteobacteria ; Pseudomonas ; Receptors, GABA - genetics ; Receptors, GABA - metabolism ; Rhizobium ; Signal transduction ; Solanum lycopersicum - microbiology ; Structure-Activity Relationship ; Transcriptome</subject><ispartof>Molecular microbiology, 2012-12, Vol.86 (5), p.1085-1099</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</citedby><cites>FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26646914$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23043322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Mondy, Samuel</creatorcontrib><creatorcontrib>Hommais, Florence</creatorcontrib><creatorcontrib>Vigouroux, Armelle</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Faure, Denis</creatorcontrib><title>Structural basis for selective GABA binding in bacterial pathogens</title><title>Molecular microbiology</title><addtitle>Molecular Microbiology</addtitle><description>Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</description><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - chemistry</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Agrobacterium tumefaciens - pathogenicity</subject><subject>Azospirillum</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Burkholderia</subject><subject>Crystallography, X-Ray</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Host-Pathogen Interactions</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mutation</subject><subject>Nicotiana - microbiology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Phylogeny</subject><subject>Plant Diseases - microbiology</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteobacteria</subject><subject>Pseudomonas</subject><subject>Receptors, GABA - genetics</subject><subject>Receptors, GABA - metabolism</subject><subject>Rhizobium</subject><subject>Signal transduction</subject><subject>Solanum lycopersicum - microbiology</subject><subject>Structure-Activity Relationship</subject><subject>Transcriptome</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0VtPFDEUB_DGaGRBHvwCZhJDAg8DbU-vjwuRhWTRGAV8azrdDhbnsrYzXL49hV0wMTGxL335nXPa80foPcH7JJ-Dtg37hGIGr9CEgOAl1Vy9RhOsOS5B0R8baDOla4wJYAFv0QaFjIHSCTr8NsTRDWO0TVHZFFJR97FIvvFuCDe-mE0Pp0UVukXororQZeMGH0PWSzv87K98l96hN7Vtkt9e31vo_PjT96OTcv5ldno0nZeOKQ0lt94KRisimAAsQVmpca0XmlhdqfwcTSQHILrClDrPhGaV05wpCZWlqoYttLvqu4z979GnwbQhOd80tvP9mAyhXEpGhcb_QSnmEmsQmX78i173Y-zyR56U4MAEzWpvpVzsU4q-NssYWhvvDcHmMQOTMzBPGWT7Yd1xrFq_eJHPS89gZw1scrapo-1cSH-cyBvShGV3sHK3ofH3_55ozs5On0eXq4qQBn_3UmHjLyMkSG4uP88MUxf6qxTKzOEBuI6oCg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Planamente, Sara</creator><creator>Mondy, Samuel</creator><creator>Hommais, Florence</creator><creator>Vigouroux, Armelle</creator><creator>Moréra, Solange</creator><creator>Faure, Denis</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope></search><sort><creationdate>201212</creationdate><title>Structural basis for selective GABA binding in bacterial pathogens</title><author>Planamente, Sara ; Mondy, Samuel ; Hommais, Florence ; Vigouroux, Armelle ; Moréra, Solange ; Faure, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4893-5aea642b164630738a790f9d91a9b843391753319b022ce4694bc954873ba28f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - chemistry</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Agrobacterium tumefaciens - pathogenicity</topic><topic>Azospirillum</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Burkholderia</topic><topic>Crystallography, X-Ray</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Host-Pathogen Interactions</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mutation</topic><topic>Nicotiana - microbiology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Phylogeny</topic><topic>Plant Diseases - microbiology</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteobacteria</topic><topic>Pseudomonas</topic><topic>Receptors, GABA - genetics</topic><topic>Receptors, GABA - metabolism</topic><topic>Rhizobium</topic><topic>Signal transduction</topic><topic>Solanum lycopersicum - microbiology</topic><topic>Structure-Activity Relationship</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Mondy, Samuel</creatorcontrib><creatorcontrib>Hommais, Florence</creatorcontrib><creatorcontrib>Vigouroux, Armelle</creatorcontrib><creatorcontrib>Moréra, Solange</creatorcontrib><creatorcontrib>Faure, Denis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Planamente, Sara</au><au>Mondy, Samuel</au><au>Hommais, Florence</au><au>Vigouroux, Armelle</au><au>Moréra, Solange</au><au>Faure, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for selective GABA binding in bacterial pathogens</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Molecular Microbiology</addtitle><date>2012-12</date><risdate>2012</risdate><volume>86</volume><issue>5</issue><spage>1085</spage><epage>1099</epage><pages>1085-1099</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary GABA acts as an intercellular signal in eukaryotes and as an interspecies signal in host–microbe interactions. Structural characteristics of selective eukaryotic GABA receptors and bacterial GABA sensors are unknown. Here, we identified the selective GABA‐binding protein, called Atu4243, in the plant pathogen Agrobacterium tumefaciens. A constructed atu4243 mutant was affected in GABA transport and in expression of the GABA‐regulated functions, including aggressiveness on two plant hosts and degradation of the quorum‐sensing signal. The GABA‐bound Atu4243 structure at 1.28 Å reveals that GABA adopts a conformation never observed so far and interacts with two key residues, Arg203 and Asp226 of which the role in GABA binding and GABA signalling in Agrobacterium has been validated using appropriate mutants. The conformational GABA‐analogue trans‐4‐aminocrotonic acid (TACA) antagonizes GABA activity, suggesting structural similarities between the binding sites of the bacterial sensor Atu4243 and mammalian GABAC receptors. Exploration of genomic databases reveals Atu4243 orthologues in several pathogenic and symbiotic proteobacteria, such as Rhizobium, Azospirillum, Burkholderia and Pseudomonas. Thus, this study establishes a structural basis for selective GABA sensors and offers opportunities for deciphering the role of the GABA‐mediated communication in several host–pathogen interactions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23043322</pmid><doi>10.1111/mmi.12043</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2012-12, Vol.86 (5), p.1085-1099
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_1257742690
source MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Agrobacterium tumefaciens
Agrobacterium tumefaciens - chemistry
Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - metabolism
Agrobacterium tumefaciens - pathogenicity
Azospirillum
Bacteria
Bacterial proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Binding sites
Biological and medical sciences
Burkholderia
Crystallography, X-Ray
Eukaryotes
Fundamental and applied biological sciences. Psychology
gamma-Aminobutyric Acid - metabolism
Gene Expression Regulation, Bacterial
Host-Pathogen Interactions
Microbiology
Miscellaneous
Mutation
Nicotiana - microbiology
Oligonucleotide Array Sequence Analysis
Phylogeny
Plant Diseases - microbiology
Protein Binding
Protein Structure, Tertiary
Proteobacteria
Pseudomonas
Receptors, GABA - genetics
Receptors, GABA - metabolism
Rhizobium
Signal transduction
Solanum lycopersicum - microbiology
Structure-Activity Relationship
Transcriptome
title Structural basis for selective GABA binding in bacterial pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20selective%20GABA%20binding%20in%20bacterial%20pathogens&rft.jtitle=Molecular%20microbiology&rft.au=Planamente,%20Sara&rft.date=2012-12&rft.volume=86&rft.issue=5&rft.spage=1085&rft.epage=1099&rft.pages=1085-1099&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12043&rft_dat=%3Cproquest_cross%3E2827541561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220653462&rft_id=info:pmid/23043322&rfr_iscdi=true