Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors

The growing demand for compact point-of-care medical devices and portable instruments for on-site environmental sampling has stimulated intense research on flexible sensors that can be miniaturized and function under considerable physical deformation. We report a new type of flexible electrochemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2013-03, Vol.41, p.417-423
Hauptverfasser: Xiao, Fei, Li, Yuanqing, Gao, Hongcai, Ge, Shuibing, Duan, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growing demand for compact point-of-care medical devices and portable instruments for on-site environmental sampling has stimulated intense research on flexible sensors that can be miniaturized and function under considerable physical deformation. We report a new type of flexible electrochemical biosensors based on free-standing graphene paper carrying binary nanocomposites of PtAu alloy and MnO2. The coral-like PtAu–MnO2 nanocomposites are grown on the substrate through one-step template-free electrodeposition, leading to an intimate contact between the PtAu alloy and MnO2 matrix. The flexible electrode exhibits a unique set of structural and electrochemical properties such as better uniformity, larger active surface areas, and faster electron transfer in comparison with the control electrode prepared by tandem growth of MnO2 network and PtAu alloy in two steps. In nonenzymatic amperometric glucose detection, the PtAu–MnO2 binary nanostructure-decorated graphene paper has shown greatly enhanced sensing performance such as wide liner range (0.1mM to 30.0mM), high sensitivity (58.54μAcm−2mM−1), low detection limit (0.02mM, S/N=3), satisfactory selectivity, excellent reproducibility and stability, and tolerability to mechanical stress. The strategy of co-growth of metal and metal oxides on freestanding carbon substrates opens new possibility to develop high-performance flexible electrochemical sensors.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2012.08.062