Ultralow Pt-loading bimetallic nanoflowers: fabrication and sensing applications

Ultralow Pt-loading Au nanoflowers (AuNFs) were synthesized on a glassy carbon electrode surface by the underpotential deposition (UPD) monolayer redox replacement technique, which involves redox replacement of a copper UPD monolayer by PtCl42− that can be reduced and deposited simultaneously. Field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-01, Vol.24 (2), p.025501-025501
Hauptverfasser: Wu, Qingqing, Li, Yongxin, Xian, Hongying, Xu, Chaodi, Wang, Lun, Chen, Zhibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultralow Pt-loading Au nanoflowers (AuNFs) were synthesized on a glassy carbon electrode surface by the underpotential deposition (UPD) monolayer redox replacement technique, which involves redox replacement of a copper UPD monolayer by PtCl42− that can be reduced and deposited simultaneously. Field-emission scanning electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy and the electrochemical method were utilized to characterize the ultralow Pt-loading AuNFs. Cyclic voltammogram results showed that the ultralow Pt-loading AuNFs exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide and the oxidation of glucose in neutral media, and the reaction pathway of glucose oxidation was changed from an intermediate process based on the electrosorption of glucose to a direct oxidation process. From chronoamperometric results, it could be obtained that this prepared biosensor had wide linear ranges and very low detection limits (DLs) for H2O2 (0.025-94.3 μM; DL = 0.006 μM) and glucose (0.0028-8.0 mM; DL = 0.8 μM), which were much better than previous results.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/24/2/025501