Probing General Relativity and New Physics with Lunar Laser Ranging

Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2012-11, Vol.692, p.275-279
Hauptverfasser: Dell'Agnello, S., Maiello, M., Currie, D.G., Boni, A., Berardi, S., Cantone, C., Delle Monache, G.O., Intaglietta, N., Lops, C., Garattini, M., Martini, M., Patrizi, G., Porcelli, L., Tibuzzi, M., Vittori, R., Bianco, G., Coradini, A., Dionisio, C., March, R., Bellettini, G., Tauraso, R., Chandler, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 275
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 692
creator Dell'Agnello, S.
Maiello, M.
Currie, D.G.
Boni, A.
Berardi, S.
Cantone, C.
Delle Monache, G.O.
Intaglietta, N.
Lops, C.
Garattini, M.
Martini, M.
Patrizi, G.
Porcelli, L.
Tibuzzi, M.
Vittori, R.
Bianco, G.
Coradini, A.
Dionisio, C.
March, R.
Bellettini, G.
Tauraso, R.
Chandler, J.
description Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newtonian Parameters), addressing this way both the possible changes in the gravitational constant and the self-energy properties of the gravitational field. In addition, the LLR has provided significant information on the composition and origin of the Moon. This is the only Apollo experiment that is still in operation. Initially the Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements. We built a new experimental apparatus (the ‘Satellite/Lunar Laser Ranging Characterization Facility’, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications (Dell'Agnello et al., 2011 [13]). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellite Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF) [4], to provide better definition of the geocenter (origin) and the scale (lengt
doi_str_mv 10.1016/j.nima.2012.01.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1238107772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900212000162</els_id><sourcerecordid>1238107772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-453c347bfc55a06f32f024765eedc40e1e34a999df566a6dc13548c6dd497ef93</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4ClHL7sm2d1kA16kaBUWLUXPIU1m25Rttibblr69KfXsXH4Y_m9gPoTuKckpofxxnXu30TkjlOWE5oSwCzSitWCZrAS_RKNUqjOZ9tfoJsY1SSNFPUKTWegXzi_xFDwE3eE5dHpwezccsfYWf8ABz1bH6EzEBzescLPzOuBGRwh4rv0ysbfoqtVdhLu_HKPv15evyVvWfE7fJ89NZgohhqysClOUYtGaqtKEtwVrCSsFrwCsKQlQKEotpbRtxbnm1tCiKmvDrS2lgFYWY_RwvrsN_c8O4qA2LhroOu2h30VFWVFTIoRgqcrOVRP6GAO0ahuSoHBUlKiTMbVWJ2PqZEwRqpKZBD2dIUhP7B0EFY0Db8C6AGZQtnf_4b-pvXOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238107772</pqid></control><display><type>article</type><title>Probing General Relativity and New Physics with Lunar Laser Ranging</title><source>Elsevier ScienceDirect Journals</source><creator>Dell'Agnello, S. ; Maiello, M. ; Currie, D.G. ; Boni, A. ; Berardi, S. ; Cantone, C. ; Delle Monache, G.O. ; Intaglietta, N. ; Lops, C. ; Garattini, M. ; Martini, M. ; Patrizi, G. ; Porcelli, L. ; Tibuzzi, M. ; Vittori, R. ; Bianco, G. ; Coradini, A. ; Dionisio, C. ; March, R. ; Bellettini, G. ; Tauraso, R. ; Chandler, J.</creator><creatorcontrib>Dell'Agnello, S. ; Maiello, M. ; Currie, D.G. ; Boni, A. ; Berardi, S. ; Cantone, C. ; Delle Monache, G.O. ; Intaglietta, N. ; Lops, C. ; Garattini, M. ; Martini, M. ; Patrizi, G. ; Porcelli, L. ; Tibuzzi, M. ; Vittori, R. ; Bianco, G. ; Coradini, A. ; Dionisio, C. ; March, R. ; Bellettini, G. ; Tauraso, R. ; Chandler, J.</creatorcontrib><description>Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newtonian Parameters), addressing this way both the possible changes in the gravitational constant and the self-energy properties of the gravitational field. In addition, the LLR has provided significant information on the composition and origin of the Moon. This is the only Apollo experiment that is still in operation. Initially the Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements. We built a new experimental apparatus (the ‘Satellite/Lunar Laser Ranging Characterization Facility’, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications (Dell'Agnello et al., 2011 [13]). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellite Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF) [4], to provide better definition of the geocenter (origin) and the scale (length unit). The SCF is also actively used to develop, validate and optimize the second generation LLR arrays for precision gravity and lunar science measurements to be performed with robotic missions of the International Lunar Network in which NASA and ASI participate (ILN). The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. For the MAGIA lunar orbiter Phase A study funded by ASI (Dell'Agnello et al., 2010 [14]), we studied fundamental physics and absolute positioning metrology experiments, to improve test of the gravitational redshift in the Earth–Moon system predicted by General Relativity and a precursor test of our second generation LLR payload.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2012.01.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Laser ranging ; Probing General Relativity</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2012-11, Vol.692, p.275-279</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-453c347bfc55a06f32f024765eedc40e1e34a999df566a6dc13548c6dd497ef93</citedby><cites>FETCH-LOGICAL-c377t-453c347bfc55a06f32f024765eedc40e1e34a999df566a6dc13548c6dd497ef93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900212000162$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dell'Agnello, S.</creatorcontrib><creatorcontrib>Maiello, M.</creatorcontrib><creatorcontrib>Currie, D.G.</creatorcontrib><creatorcontrib>Boni, A.</creatorcontrib><creatorcontrib>Berardi, S.</creatorcontrib><creatorcontrib>Cantone, C.</creatorcontrib><creatorcontrib>Delle Monache, G.O.</creatorcontrib><creatorcontrib>Intaglietta, N.</creatorcontrib><creatorcontrib>Lops, C.</creatorcontrib><creatorcontrib>Garattini, M.</creatorcontrib><creatorcontrib>Martini, M.</creatorcontrib><creatorcontrib>Patrizi, G.</creatorcontrib><creatorcontrib>Porcelli, L.</creatorcontrib><creatorcontrib>Tibuzzi, M.</creatorcontrib><creatorcontrib>Vittori, R.</creatorcontrib><creatorcontrib>Bianco, G.</creatorcontrib><creatorcontrib>Coradini, A.</creatorcontrib><creatorcontrib>Dionisio, C.</creatorcontrib><creatorcontrib>March, R.</creatorcontrib><creatorcontrib>Bellettini, G.</creatorcontrib><creatorcontrib>Tauraso, R.</creatorcontrib><creatorcontrib>Chandler, J.</creatorcontrib><title>Probing General Relativity and New Physics with Lunar Laser Ranging</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newtonian Parameters), addressing this way both the possible changes in the gravitational constant and the self-energy properties of the gravitational field. In addition, the LLR has provided significant information on the composition and origin of the Moon. This is the only Apollo experiment that is still in operation. Initially the Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements. We built a new experimental apparatus (the ‘Satellite/Lunar Laser Ranging Characterization Facility’, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications (Dell'Agnello et al., 2011 [13]). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellite Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF) [4], to provide better definition of the geocenter (origin) and the scale (length unit). The SCF is also actively used to develop, validate and optimize the second generation LLR arrays for precision gravity and lunar science measurements to be performed with robotic missions of the International Lunar Network in which NASA and ASI participate (ILN). The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. For the MAGIA lunar orbiter Phase A study funded by ASI (Dell'Agnello et al., 2010 [14]), we studied fundamental physics and absolute positioning metrology experiments, to improve test of the gravitational redshift in the Earth–Moon system predicted by General Relativity and a precursor test of our second generation LLR payload.</description><subject>Laser ranging</subject><subject>Probing General Relativity</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4ClHL7sm2d1kA16kaBUWLUXPIU1m25Rttibblr69KfXsXH4Y_m9gPoTuKckpofxxnXu30TkjlOWE5oSwCzSitWCZrAS_RKNUqjOZ9tfoJsY1SSNFPUKTWegXzi_xFDwE3eE5dHpwezccsfYWf8ABz1bH6EzEBzescLPzOuBGRwh4rv0ysbfoqtVdhLu_HKPv15evyVvWfE7fJ89NZgohhqysClOUYtGaqtKEtwVrCSsFrwCsKQlQKEotpbRtxbnm1tCiKmvDrS2lgFYWY_RwvrsN_c8O4qA2LhroOu2h30VFWVFTIoRgqcrOVRP6GAO0ahuSoHBUlKiTMbVWJ2PqZEwRqpKZBD2dIUhP7B0EFY0Db8C6AGZQtnf_4b-pvXOs</recordid><startdate>20121111</startdate><enddate>20121111</enddate><creator>Dell'Agnello, S.</creator><creator>Maiello, M.</creator><creator>Currie, D.G.</creator><creator>Boni, A.</creator><creator>Berardi, S.</creator><creator>Cantone, C.</creator><creator>Delle Monache, G.O.</creator><creator>Intaglietta, N.</creator><creator>Lops, C.</creator><creator>Garattini, M.</creator><creator>Martini, M.</creator><creator>Patrizi, G.</creator><creator>Porcelli, L.</creator><creator>Tibuzzi, M.</creator><creator>Vittori, R.</creator><creator>Bianco, G.</creator><creator>Coradini, A.</creator><creator>Dionisio, C.</creator><creator>March, R.</creator><creator>Bellettini, G.</creator><creator>Tauraso, R.</creator><creator>Chandler, J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20121111</creationdate><title>Probing General Relativity and New Physics with Lunar Laser Ranging</title><author>Dell'Agnello, S. ; Maiello, M. ; Currie, D.G. ; Boni, A. ; Berardi, S. ; Cantone, C. ; Delle Monache, G.O. ; Intaglietta, N. ; Lops, C. ; Garattini, M. ; Martini, M. ; Patrizi, G. ; Porcelli, L. ; Tibuzzi, M. ; Vittori, R. ; Bianco, G. ; Coradini, A. ; Dionisio, C. ; March, R. ; Bellettini, G. ; Tauraso, R. ; Chandler, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-453c347bfc55a06f32f024765eedc40e1e34a999df566a6dc13548c6dd497ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Laser ranging</topic><topic>Probing General Relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell'Agnello, S.</creatorcontrib><creatorcontrib>Maiello, M.</creatorcontrib><creatorcontrib>Currie, D.G.</creatorcontrib><creatorcontrib>Boni, A.</creatorcontrib><creatorcontrib>Berardi, S.</creatorcontrib><creatorcontrib>Cantone, C.</creatorcontrib><creatorcontrib>Delle Monache, G.O.</creatorcontrib><creatorcontrib>Intaglietta, N.</creatorcontrib><creatorcontrib>Lops, C.</creatorcontrib><creatorcontrib>Garattini, M.</creatorcontrib><creatorcontrib>Martini, M.</creatorcontrib><creatorcontrib>Patrizi, G.</creatorcontrib><creatorcontrib>Porcelli, L.</creatorcontrib><creatorcontrib>Tibuzzi, M.</creatorcontrib><creatorcontrib>Vittori, R.</creatorcontrib><creatorcontrib>Bianco, G.</creatorcontrib><creatorcontrib>Coradini, A.</creatorcontrib><creatorcontrib>Dionisio, C.</creatorcontrib><creatorcontrib>March, R.</creatorcontrib><creatorcontrib>Bellettini, G.</creatorcontrib><creatorcontrib>Tauraso, R.</creatorcontrib><creatorcontrib>Chandler, J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell'Agnello, S.</au><au>Maiello, M.</au><au>Currie, D.G.</au><au>Boni, A.</au><au>Berardi, S.</au><au>Cantone, C.</au><au>Delle Monache, G.O.</au><au>Intaglietta, N.</au><au>Lops, C.</au><au>Garattini, M.</au><au>Martini, M.</au><au>Patrizi, G.</au><au>Porcelli, L.</au><au>Tibuzzi, M.</au><au>Vittori, R.</au><au>Bianco, G.</au><au>Coradini, A.</au><au>Dionisio, C.</au><au>March, R.</au><au>Bellettini, G.</au><au>Tauraso, R.</au><au>Chandler, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing General Relativity and New Physics with Lunar Laser Ranging</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2012-11-11</date><risdate>2012</risdate><volume>692</volume><spage>275</spage><epage>279</epage><pages>275-279</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Over the past 40 years, Lunar Laser Ranging (LLR, developed by the Univ. of Maryland (PI) and INFN-LNF (Co-PI)) to the Apollo Cube Corner Retroreflector (CCR) arrays have supplied almost all the significant tests of General Relativity (Currie et al., 2009 [12]). LLR can evaluate the PPN (Post Newtonian Parameters), addressing this way both the possible changes in the gravitational constant and the self-energy properties of the gravitational field. In addition, the LLR has provided significant information on the composition and origin of the Moon. This is the only Apollo experiment that is still in operation. Initially the Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Over the decades, the ranging capabilities of the ground stations have improved by more than two orders of magnitude. Now, because of the lunar librations, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements. We built a new experimental apparatus (the ‘Satellite/Lunar Laser Ranging Characterization Facility’, SCF) and created a new test procedure (the SCF-Test) to characterize and model the detailed thermal behavior and the optical performance of cube corner laser retroreflectors in space for industrial and scientific applications (Dell'Agnello et al., 2011 [13]). Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the SLR retroreflector payload under thermal conditions produced with a close-match solar simulator. The apparatus includes infrared cameras for non-invasive thermometry, thermal control and real-time movement of the payload to experimentally simulate satellite orientation on orbit with respect to both solar illumination and laser interrogation beams. These unique capabilities provide experimental validation of the space segment for SLR and Lunar Laser Ranging (LLR). The primary goal of these innovative tools is to provide critical design and diagnostic capabilities for Satellite Laser Ranging (SLR) to Galileo and other GNSS (Global Navigation Satellite System) constellations. Implementation of new retroreflector designs being studied will help to improve GNSS orbits, which will then increase the accuracy, stability, and distribution of the International Terrestrial Reference Frame (ITRF) [4], to provide better definition of the geocenter (origin) and the scale (length unit). The SCF is also actively used to develop, validate and optimize the second generation LLR arrays for precision gravity and lunar science measurements to be performed with robotic missions of the International Lunar Network in which NASA and ASI participate (ILN). The capability will allow us to optimize the design of GNSS laser retroreflector payloads to maximize ranging efficiency, to improve signal-to-noise conditions in daylight and to provide pre-launch validation of retroreflector performance under laboratory-simulated space conditions. For the MAGIA lunar orbiter Phase A study funded by ASI (Dell'Agnello et al., 2010 [14]), we studied fundamental physics and absolute positioning metrology experiments, to improve test of the gravitational redshift in the Earth–Moon system predicted by General Relativity and a precursor test of our second generation LLR payload.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2012.01.002</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2012-11, Vol.692, p.275-279
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_1238107772
source Elsevier ScienceDirect Journals
subjects Laser ranging
Probing General Relativity
title Probing General Relativity and New Physics with Lunar Laser Ranging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20General%20Relativity%20and%20New%20Physics%20with%20Lunar%20Laser%20Ranging&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Dell'Agnello,%20S.&rft.date=2012-11-11&rft.volume=692&rft.spage=275&rft.epage=279&rft.pages=275-279&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2012.01.002&rft_dat=%3Cproquest_cross%3E1238107772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238107772&rft_id=info:pmid/&rft_els_id=S0168900212000162&rfr_iscdi=true