Analytical Performance Verification of a Molecular Diagnostic for Cytology-Indeterminate Thyroid Nodules
Objective: Our objective was to verify the analytical performance of the Afirma gene expression classifier (GEC) in the classification of cytologically indeterminate thyroid nodule fine-needle aspirates (FNAs). Design: Analytical performance studies were designed to characterize the stability of RNA...
Gespeichert in:
Veröffentlicht in: | The journal of clinical endocrinology and metabolism 2012-12, Vol.97 (12), p.E2297-E2306 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective:
Our objective was to verify the analytical performance of the Afirma gene expression classifier (GEC) in the classification of cytologically indeterminate thyroid nodule fine-needle aspirates (FNAs).
Design:
Analytical performance studies were designed to characterize the stability of RNA in FNAs during collection and shipment, analytical sensitivity as applied to input RNA concentration and malignant/benign FNA mixtures, analytical specificity (i.e. potentially interfering substances) as tested on blood and genomic DNA, and assay performance studies including intra-nodule, intraassay, inter-assay, and inter-laboratory reproducibility.
Results:
RNA content within FNAs preserved in FNAProtect is stable for up to 6 d at room temperature with no changes in RNA yield (P = 0.58) or quality (P = 0.56). FNA storage and shipping temperatures were found to have no significant effect on GEC scores (P = 0.55) or calls (100% concordance). Analytical sensitivity studies demonstrated tolerance to variation in RNA input (5–25 ng) and to the dilution of malignant FNA material down to 20%. Analytical specificity studies using malignant samples mixed with blood (up to 83%) and genomic DNA (up to 30%) demonstrated negligible assay interference with respect to false-negative calls, although benign FNA samples mixed with relatively high proportions of blood demonstrated a potential for false-positive calls. The test is reproducible from extraction through GEC result, including variation across operators, runs, reagent lots, and laboratories (sd of 0.158 for scores on a >6 unit scale).
Conclusions:
Analytical sensitivity, analytical specificity, robustness, and quality control of the GEC were successfully verified, indicating its suitability for clinical use. |
---|---|
ISSN: | 0021-972X 1945-7197 |
DOI: | 10.1210/jc.2012-1923 |