Complete insecurity of quantum protocols for classical two-party computation

A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-10, Vol.109 (16), p.160501-160501, Article 160501
Hauptverfasser: Buhrman, Harry, Christandl, Matthias, Schaffner, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160501
container_issue 16
container_start_page 160501
container_title Physical review letters
container_volume 109
creator Buhrman, Harry
Christandl, Matthias
Schaffner, Christian
description A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.
doi_str_mv 10.1103/PhysRevLett.109.160501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237505895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237505895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-49b1fad0a39dc8b201415b99852297b9cb1151cb522558d487e3973b94e092d33</originalsourceid><addsrcrecordid>eNpNkFtLxDAQhYMo7rr6F5Y--tJ1Jmna5lEWb1BQRJ9LkqZYaZtuLsr-eyur4tMwwzlnDh8ha4QNIrCrp7e9fzYflQlhgyA2mAMHPCJLhEKkBWJ2TJYADFMBUCzImffvAIA0L0_JgjKKHHJYkmprh6k3wSTd6I2Orgv7xLbJLsoxxCGZnA1W294nrXWJ7qX3nZZ9Ej5tOkk3i_UcEIMMnR3PyUkre28ufuaKvN7evGzv0-rx7mF7XaWacRHSTChsZQOSiUaXigJmyJUQJadUFEpohchRq3nlvGyysjBMFEyJzICgDWMrcnnIndvtovGhHjqvTd_L0djoa6Ss4MBLwWdpfpBqZ713pq0n1w3S7WuE-ptk_Y_kfBP1geRsXP_8iGowzZ_tFx37Ap46cpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237505895</pqid></control><display><type>article</type><title>Complete insecurity of quantum protocols for classical two-party computation</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Buhrman, Harry ; Christandl, Matthias ; Schaffner, Christian</creator><creatorcontrib>Buhrman, Harry ; Christandl, Matthias ; Schaffner, Christian</creatorcontrib><description>A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.160501</identifier><identifier>PMID: 23215060</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-10, Vol.109 (16), p.160501-160501, Article 160501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-49b1fad0a39dc8b201415b99852297b9cb1151cb522558d487e3973b94e092d33</citedby><cites>FETCH-LOGICAL-c359t-49b1fad0a39dc8b201415b99852297b9cb1151cb522558d487e3973b94e092d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23215060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buhrman, Harry</creatorcontrib><creatorcontrib>Christandl, Matthias</creatorcontrib><creatorcontrib>Schaffner, Christian</creatorcontrib><title>Complete insecurity of quantum protocols for classical two-party computation</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkFtLxDAQhYMo7rr6F5Y--tJ1Jmna5lEWb1BQRJ9LkqZYaZtuLsr-eyur4tMwwzlnDh8ha4QNIrCrp7e9fzYflQlhgyA2mAMHPCJLhEKkBWJ2TJYADFMBUCzImffvAIA0L0_JgjKKHHJYkmprh6k3wSTd6I2Orgv7xLbJLsoxxCGZnA1W294nrXWJ7qX3nZZ9Ej5tOkk3i_UcEIMMnR3PyUkre28ufuaKvN7evGzv0-rx7mF7XaWacRHSTChsZQOSiUaXigJmyJUQJadUFEpohchRq3nlvGyysjBMFEyJzICgDWMrcnnIndvtovGhHjqvTd_L0djoa6Ss4MBLwWdpfpBqZ713pq0n1w3S7WuE-ptk_Y_kfBP1geRsXP_8iGowzZ_tFx37Ap46cpA</recordid><startdate>20121019</startdate><enddate>20121019</enddate><creator>Buhrman, Harry</creator><creator>Christandl, Matthias</creator><creator>Schaffner, Christian</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121019</creationdate><title>Complete insecurity of quantum protocols for classical two-party computation</title><author>Buhrman, Harry ; Christandl, Matthias ; Schaffner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-49b1fad0a39dc8b201415b99852297b9cb1151cb522558d487e3973b94e092d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhrman, Harry</creatorcontrib><creatorcontrib>Christandl, Matthias</creatorcontrib><creatorcontrib>Schaffner, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhrman, Harry</au><au>Christandl, Matthias</au><au>Schaffner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete insecurity of quantum protocols for classical two-party computation</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-10-19</date><risdate>2012</risdate><volume>109</volume><issue>16</issue><spage>160501</spage><epage>160501</epage><pages>160501-160501</pages><artnum>160501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.</abstract><cop>United States</cop><pmid>23215060</pmid><doi>10.1103/PhysRevLett.109.160501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-10, Vol.109 (16), p.160501-160501, Article 160501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1237505895
source APS: American Physical Society E-Journals (Physics)
title Complete insecurity of quantum protocols for classical two-party computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20insecurity%20of%20quantum%20protocols%20for%20classical%20two-party%20computation&rft.jtitle=Physical%20review%20letters&rft.au=Buhrman,%20Harry&rft.date=2012-10-19&rft.volume=109&rft.issue=16&rft.spage=160501&rft.epage=160501&rft.pages=160501-160501&rft.artnum=160501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.160501&rft_dat=%3Cproquest_cross%3E1237505895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237505895&rft_id=info:pmid/23215060&rfr_iscdi=true