Giant electrocaloric effect around Tc
We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Lett 2012-11, Vol.109 (18), p.187604-187604 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187604 |
---|---|
container_issue | 18 |
container_start_page | 187604 |
container_title | Phys. Rev. Lett |
container_volume | 109 |
creator | Rose, Maimon C Cohen, R E |
description | We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets. |
doi_str_mv | 10.1103/PhysRevLett.109.187604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237502913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237502913</sourcerecordid><originalsourceid>FETCH-LOGICAL-o153t-395888e8fe527814679e0e2f8e11ea2e3509c447f324e28ac8d0b024b1645d6e3</originalsourceid><addsrcrecordid>eNo1j1FLwzAUhYMgbk7_wiiC4EvrvUnapI8ydAoFReZzSdNbVmmb2aTC_r2FzafDgY-PcxhbIySIIB4_9kf_Sb8FhZAg5AlqlYG8YEsElccKUS7YtfffAIA801dswQXHVAi-ZPfb1gwhoo5sGJ01nRtbG1HTzD0yo5uGOtrZG3bZmM7T7TlX7Ovlebd5jYv37dvmqYjdrAuxyFOtNemGUq40ykzlBMQbTYhkOIkUciulagSXxLWxuoYKuKwwk2mdkVixu5PX-dCW3raB7N66YZjXlAiZmufP0MMJOozuZyIfyr71lrrODOQmXyIXKgWeo5jR9Rmdqp7q8jC2vRmP5f9_8Qf9o1rJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237502913</pqid></control><display><type>article</type><title>Giant electrocaloric effect around Tc</title><source>American Physical Society Journals</source><creator>Rose, Maimon C ; Cohen, R E</creator><creatorcontrib>Rose, Maimon C ; Cohen, R E ; Energy Frontier Research Centers (EFRC) ; Energy Frontier Research in Extreme Environments (EFree)</creatorcontrib><description>We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.</description><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.187604</identifier><identifier>PMID: 23215332</identifier><language>eng</language><publisher>United States</publisher><subject>catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including batteries and capacitors), hydrogen and fuel cells, superconductivity, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials)</subject><ispartof>Phys. Rev. Lett, 2012-11, Vol.109 (18), p.187604-187604</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23215332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1067268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rose, Maimon C</creatorcontrib><creatorcontrib>Cohen, R E</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Energy Frontier Research in Extreme Environments (EFree)</creatorcontrib><title>Giant electrocaloric effect around Tc</title><title>Phys. Rev. Lett</title><addtitle>Phys Rev Lett</addtitle><description>We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.</description><subject>catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including batteries and capacitors), hydrogen and fuel cells, superconductivity, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials)</subject><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1j1FLwzAUhYMgbk7_wiiC4EvrvUnapI8ydAoFReZzSdNbVmmb2aTC_r2FzafDgY-PcxhbIySIIB4_9kf_Sb8FhZAg5AlqlYG8YEsElccKUS7YtfffAIA801dswQXHVAi-ZPfb1gwhoo5sGJ01nRtbG1HTzD0yo5uGOtrZG3bZmM7T7TlX7Ovlebd5jYv37dvmqYjdrAuxyFOtNemGUq40ykzlBMQbTYhkOIkUciulagSXxLWxuoYKuKwwk2mdkVixu5PX-dCW3raB7N66YZjXlAiZmufP0MMJOozuZyIfyr71lrrODOQmXyIXKgWeo5jR9Rmdqp7q8jC2vRmP5f9_8Qf9o1rJ</recordid><startdate>20121102</startdate><enddate>20121102</enddate><creator>Rose, Maimon C</creator><creator>Cohen, R E</creator><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20121102</creationdate><title>Giant electrocaloric effect around Tc</title><author>Rose, Maimon C ; Cohen, R E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o153t-395888e8fe527814679e0e2f8e11ea2e3509c447f324e28ac8d0b024b1645d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including batteries and capacitors), hydrogen and fuel cells, superconductivity, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rose, Maimon C</creatorcontrib><creatorcontrib>Cohen, R E</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Energy Frontier Research in Extreme Environments (EFree)</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rose, Maimon C</au><au>Cohen, R E</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Energy Frontier Research in Extreme Environments (EFree)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant electrocaloric effect around Tc</atitle><jtitle>Phys. Rev. Lett</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-11-02</date><risdate>2012</risdate><volume>109</volume><issue>18</issue><spage>187604</spage><epage>187604</epage><pages>187604-187604</pages><eissn>1079-7114</eissn><abstract>We use molecular dynamics with a first-principles-based shell model potential to study the electrocaloric effect (ECE) in lithium niobate, LiNbO(3), and find a giant electrocaloric effect along a line passing through the ferroelectric transition. With an applied electric field, a line of maximum ECE passes through the zero field ferroelectric transition, continuing along a Widom line at high temperatures with increasing fields, and along the instability that leads to homogeneous ferroelectric switching below T(c) with an applied field antiparallel to the spontaneous polarization. This line is defined as the minimum in the inverse capacitance under an applied electric field. We investigate the effects of pressure, temperature and an applied electric field on the ECE. The behavior we observe in LiNbO(3) should generally apply to ferroelectrics; we therefore suggest that the operating temperature for refrigeration and energy scavenging applications should be above the ferroelectric transition region to obtain a large electrocaloric response. The relationship between T(c), the Widom line, and homogeneous switching should be universal among ferroelectrics, relaxors, multiferroics, and the same behavior should be found under applied magnetic fields in ferromagnets.</abstract><cop>United States</cop><pmid>23215332</pmid><doi>10.1103/PhysRevLett.109.187604</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1079-7114 |
ispartof | Phys. Rev. Lett, 2012-11, Vol.109 (18), p.187604-187604 |
issn | 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1237502913 |
source | American Physical Society Journals |
subjects | catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including batteries and capacitors), hydrogen and fuel cells, superconductivity, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials) |
title | Giant electrocaloric effect around Tc |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20electrocaloric%20effect%20around%20Tc&rft.jtitle=Phys.%20Rev.%20Lett&rft.au=Rose,%20Maimon%20C&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-11-02&rft.volume=109&rft.issue=18&rft.spage=187604&rft.epage=187604&rft.pages=187604-187604&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.187604&rft_dat=%3Cproquest_osti_%3E1237502913%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237502913&rft_id=info:pmid/23215332&rfr_iscdi=true |