CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system
► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2013-01, Vol.92 (1), p.881-884 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 1 |
container_start_page | 881 |
container_title | Carbohydrate polymers |
container_volume | 92 |
creator | Idström, Alexander Brelid, Harald Nydén, Magnus Nordstierna, Lars |
description | ► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation.
The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. |
doi_str_mv | 10.1016/j.carbpol.2012.09.097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237092392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861712010168</els_id><sourcerecordid>1237092392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</originalsourceid><addsrcrecordid>eNqFkF2L1DAUhoMo7uzoT1ByI3jT2XzZtFeyDLoKuyp-3AkhTU40Q5p0k1aYf2_KjHppeCEkec7J4UHoGSU7Smh7ddgZnYcphR0jlO1IXyMfoA3tZN9QLsRDtCFUiKZrqbxAl6UcSF0tJY_RBeOMdrwjG_R9_-nq7voLpnyPP9x9xmVe7BEnh6clTPhnytE7b_TsU8RL8fEHjjomk49l1iH4CNhACEtIBbAuWOMxWQi41HcYn6BHTocCT8_7Fn17--br_l1z-_Hm_f76tjGctKQRghnmNO-0dmBtJ7q-dVSYgdV7MvSWCW5bMjhDpJWOOBigl3I9D2ygjm_Ry1PfKaf7BcqsRl_WuXSEtBRFGZekZ7xmi16dUJNTKRmcmrIfdT4qStQqVh3UWaxaxSrS18ha9_z8xTKMYP9W_TFZgRdnQBejg8s6Gl_-cW1P1vaVe33ioAr55SGrYjxEA9ZnMLOyyf9nlN9rz5ln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237092392</pqid></control><display><type>article</type><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</creator><creatorcontrib>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</creatorcontrib><description>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation.
The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2012.09.097</identifier><identifier>PMID: 23218380</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>13C NMR ; Applied sciences ; Carbon Isotopes ; Cellulose ; Cellulose - chemistry ; Cellulose - ultrastructure ; Exact sciences and technology ; Fibril aggregation ; Hornification ; Magnetic Resonance Spectroscopy ; Microscopy, Electron, Scanning ; Models, Chemical ; Nanocrystalline cellulose ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Paper pulp ; Paper, paperboard, non wovens ; Polymer industry, paints, wood ; Pulp manufacturing ; Solid-state NMR ; Wood. Paper. Non wovens</subject><ispartof>Carbohydrate polymers, 2013-01, Vol.92 (1), p.881-884</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</citedby><cites>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2012.09.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26901016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23218380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Idström, Alexander</creatorcontrib><creatorcontrib>Brelid, Harald</creatorcontrib><creatorcontrib>Nydén, Magnus</creatorcontrib><creatorcontrib>Nordstierna, Lars</creatorcontrib><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation.
The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</description><subject>13C NMR</subject><subject>Applied sciences</subject><subject>Carbon Isotopes</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - ultrastructure</subject><subject>Exact sciences and technology</subject><subject>Fibril aggregation</subject><subject>Hornification</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nanocrystalline cellulose</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Paper pulp</subject><subject>Paper, paperboard, non wovens</subject><subject>Polymer industry, paints, wood</subject><subject>Pulp manufacturing</subject><subject>Solid-state NMR</subject><subject>Wood. Paper. Non wovens</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF2L1DAUhoMo7uzoT1ByI3jT2XzZtFeyDLoKuyp-3AkhTU40Q5p0k1aYf2_KjHppeCEkec7J4UHoGSU7Smh7ddgZnYcphR0jlO1IXyMfoA3tZN9QLsRDtCFUiKZrqbxAl6UcSF0tJY_RBeOMdrwjG_R9_-nq7voLpnyPP9x9xmVe7BEnh6clTPhnytE7b_TsU8RL8fEHjjomk49l1iH4CNhACEtIBbAuWOMxWQi41HcYn6BHTocCT8_7Fn17--br_l1z-_Hm_f76tjGctKQRghnmNO-0dmBtJ7q-dVSYgdV7MvSWCW5bMjhDpJWOOBigl3I9D2ygjm_Ry1PfKaf7BcqsRl_WuXSEtBRFGZekZ7xmi16dUJNTKRmcmrIfdT4qStQqVh3UWaxaxSrS18ha9_z8xTKMYP9W_TFZgRdnQBejg8s6Gl_-cW1P1vaVe33ioAr55SGrYjxEA9ZnMLOyyf9nlN9rz5ln</recordid><startdate>20130130</startdate><enddate>20130130</enddate><creator>Idström, Alexander</creator><creator>Brelid, Harald</creator><creator>Nydén, Magnus</creator><creator>Nordstierna, Lars</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130130</creationdate><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><author>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>13C NMR</topic><topic>Applied sciences</topic><topic>Carbon Isotopes</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - ultrastructure</topic><topic>Exact sciences and technology</topic><topic>Fibril aggregation</topic><topic>Hornification</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nanocrystalline cellulose</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Paper pulp</topic><topic>Paper, paperboard, non wovens</topic><topic>Polymer industry, paints, wood</topic><topic>Pulp manufacturing</topic><topic>Solid-state NMR</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idström, Alexander</creatorcontrib><creatorcontrib>Brelid, Harald</creatorcontrib><creatorcontrib>Nydén, Magnus</creatorcontrib><creatorcontrib>Nordstierna, Lars</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idström, Alexander</au><au>Brelid, Harald</au><au>Nydén, Magnus</au><au>Nordstierna, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2013-01-30</date><risdate>2013</risdate><volume>92</volume><issue>1</issue><spage>881</spage><epage>884</epage><pages>881-884</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation.
The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23218380</pmid><doi>10.1016/j.carbpol.2012.09.097</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2013-01, Vol.92 (1), p.881-884 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1237092392 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 13C NMR Applied sciences Carbon Isotopes Cellulose Cellulose - chemistry Cellulose - ultrastructure Exact sciences and technology Fibril aggregation Hornification Magnetic Resonance Spectroscopy Microscopy, Electron, Scanning Models, Chemical Nanocrystalline cellulose Nanoparticles - chemistry Nanoparticles - ultrastructure Paper pulp Paper, paperboard, non wovens Polymer industry, paints, wood Pulp manufacturing Solid-state NMR Wood. Paper. Non wovens |
title | CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CP/MAS%2013C%20NMR%20study%20of%20pulp%20hornification%20using%20nanocrystalline%20cellulose%20as%20a%20model%20system&rft.jtitle=Carbohydrate%20polymers&rft.au=Idstr%C3%B6m,%20Alexander&rft.date=2013-01-30&rft.volume=92&rft.issue=1&rft.spage=881&rft.epage=884&rft.pages=881-884&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2012.09.097&rft_dat=%3Cproquest_cross%3E1237092392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237092392&rft_id=info:pmid/23218380&rft_els_id=S0144861712010168&rfr_iscdi=true |