CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system

► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2013-01, Vol.92 (1), p.881-884
Hauptverfasser: Idström, Alexander, Brelid, Harald, Nydén, Magnus, Nordstierna, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 1
container_start_page 881
container_title Carbohydrate polymers
container_volume 92
creator Idström, Alexander
Brelid, Harald
Nydén, Magnus
Nordstierna, Lars
description ► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation. The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.
doi_str_mv 10.1016/j.carbpol.2012.09.097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237092392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861712010168</els_id><sourcerecordid>1237092392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</originalsourceid><addsrcrecordid>eNqFkF2L1DAUhoMo7uzoT1ByI3jT2XzZtFeyDLoKuyp-3AkhTU40Q5p0k1aYf2_KjHppeCEkec7J4UHoGSU7Smh7ddgZnYcphR0jlO1IXyMfoA3tZN9QLsRDtCFUiKZrqbxAl6UcSF0tJY_RBeOMdrwjG_R9_-nq7voLpnyPP9x9xmVe7BEnh6clTPhnytE7b_TsU8RL8fEHjjomk49l1iH4CNhACEtIBbAuWOMxWQi41HcYn6BHTocCT8_7Fn17--br_l1z-_Hm_f76tjGctKQRghnmNO-0dmBtJ7q-dVSYgdV7MvSWCW5bMjhDpJWOOBigl3I9D2ygjm_Ry1PfKaf7BcqsRl_WuXSEtBRFGZekZ7xmi16dUJNTKRmcmrIfdT4qStQqVh3UWaxaxSrS18ha9_z8xTKMYP9W_TFZgRdnQBejg8s6Gl_-cW1P1vaVe33ioAr55SGrYjxEA9ZnMLOyyf9nlN9rz5ln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237092392</pqid></control><display><type>article</type><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</creator><creatorcontrib>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</creatorcontrib><description>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation. The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2012.09.097</identifier><identifier>PMID: 23218380</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>13C NMR ; Applied sciences ; Carbon Isotopes ; Cellulose ; Cellulose - chemistry ; Cellulose - ultrastructure ; Exact sciences and technology ; Fibril aggregation ; Hornification ; Magnetic Resonance Spectroscopy ; Microscopy, Electron, Scanning ; Models, Chemical ; Nanocrystalline cellulose ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Paper pulp ; Paper, paperboard, non wovens ; Polymer industry, paints, wood ; Pulp manufacturing ; Solid-state NMR ; Wood. Paper. Non wovens</subject><ispartof>Carbohydrate polymers, 2013-01, Vol.92 (1), p.881-884</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</citedby><cites>FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2012.09.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26901016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23218380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Idström, Alexander</creatorcontrib><creatorcontrib>Brelid, Harald</creatorcontrib><creatorcontrib>Nydén, Magnus</creatorcontrib><creatorcontrib>Nordstierna, Lars</creatorcontrib><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation. The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</description><subject>13C NMR</subject><subject>Applied sciences</subject><subject>Carbon Isotopes</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - ultrastructure</subject><subject>Exact sciences and technology</subject><subject>Fibril aggregation</subject><subject>Hornification</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Chemical</subject><subject>Nanocrystalline cellulose</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Paper pulp</subject><subject>Paper, paperboard, non wovens</subject><subject>Polymer industry, paints, wood</subject><subject>Pulp manufacturing</subject><subject>Solid-state NMR</subject><subject>Wood. Paper. Non wovens</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF2L1DAUhoMo7uzoT1ByI3jT2XzZtFeyDLoKuyp-3AkhTU40Q5p0k1aYf2_KjHppeCEkec7J4UHoGSU7Smh7ddgZnYcphR0jlO1IXyMfoA3tZN9QLsRDtCFUiKZrqbxAl6UcSF0tJY_RBeOMdrwjG_R9_-nq7voLpnyPP9x9xmVe7BEnh6clTPhnytE7b_TsU8RL8fEHjjomk49l1iH4CNhACEtIBbAuWOMxWQi41HcYn6BHTocCT8_7Fn17--br_l1z-_Hm_f76tjGctKQRghnmNO-0dmBtJ7q-dVSYgdV7MvSWCW5bMjhDpJWOOBigl3I9D2ygjm_Ry1PfKaf7BcqsRl_WuXSEtBRFGZekZ7xmi16dUJNTKRmcmrIfdT4qStQqVh3UWaxaxSrS18ha9_z8xTKMYP9W_TFZgRdnQBejg8s6Gl_-cW1P1vaVe33ioAr55SGrYjxEA9ZnMLOyyf9nlN9rz5ln</recordid><startdate>20130130</startdate><enddate>20130130</enddate><creator>Idström, Alexander</creator><creator>Brelid, Harald</creator><creator>Nydén, Magnus</creator><creator>Nordstierna, Lars</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130130</creationdate><title>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</title><author>Idström, Alexander ; Brelid, Harald ; Nydén, Magnus ; Nordstierna, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3060-442c2fa38aafedd84896f14cb22c20b9d243d60bfc07d7f0febe977bfc0b2b1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>13C NMR</topic><topic>Applied sciences</topic><topic>Carbon Isotopes</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - ultrastructure</topic><topic>Exact sciences and technology</topic><topic>Fibril aggregation</topic><topic>Hornification</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Chemical</topic><topic>Nanocrystalline cellulose</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Paper pulp</topic><topic>Paper, paperboard, non wovens</topic><topic>Polymer industry, paints, wood</topic><topic>Pulp manufacturing</topic><topic>Solid-state NMR</topic><topic>Wood. Paper. Non wovens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idström, Alexander</creatorcontrib><creatorcontrib>Brelid, Harald</creatorcontrib><creatorcontrib>Nydén, Magnus</creatorcontrib><creatorcontrib>Nordstierna, Lars</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idström, Alexander</au><au>Brelid, Harald</au><au>Nydén, Magnus</au><au>Nordstierna, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2013-01-30</date><risdate>2013</risdate><volume>92</volume><issue>1</issue><spage>881</spage><epage>884</epage><pages>881-884</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>► Hornification of paper pulp is studied using solid-state NMR. ► Nanocrystalline cellulose (NCC) is used as model for the crystalline parts of pulp. ► Signs of hornification can be seen for both paper pulp and NCC after drying. ► Conclusion is that the crystalline parts of paper pulp contribute to hornification. ► Elements of higher hydrophobicity in NCC experiences increased aggregation. The hornification process of paper pulp was investigated using solid-state 13C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23218380</pmid><doi>10.1016/j.carbpol.2012.09.097</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2013-01, Vol.92 (1), p.881-884
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1237092392
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 13C NMR
Applied sciences
Carbon Isotopes
Cellulose
Cellulose - chemistry
Cellulose - ultrastructure
Exact sciences and technology
Fibril aggregation
Hornification
Magnetic Resonance Spectroscopy
Microscopy, Electron, Scanning
Models, Chemical
Nanocrystalline cellulose
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Paper pulp
Paper, paperboard, non wovens
Polymer industry, paints, wood
Pulp manufacturing
Solid-state NMR
Wood. Paper. Non wovens
title CP/MAS 13C NMR study of pulp hornification using nanocrystalline cellulose as a model system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CP/MAS%2013C%20NMR%20study%20of%20pulp%20hornification%20using%20nanocrystalline%20cellulose%20as%20a%20model%20system&rft.jtitle=Carbohydrate%20polymers&rft.au=Idstr%C3%B6m,%20Alexander&rft.date=2013-01-30&rft.volume=92&rft.issue=1&rft.spage=881&rft.epage=884&rft.pages=881-884&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2012.09.097&rft_dat=%3Cproquest_cross%3E1237092392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237092392&rft_id=info:pmid/23218380&rft_els_id=S0144861712010168&rfr_iscdi=true