Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1

Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2013-01, Vol.449 (1), p.101-108
Hauptverfasser: Fonseca, Bruno M, Paquete, Catarina M, Neto, Sónia E, Pacheco, Isabel, Soares, Cláudio M, Louro, Ricardo O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 101
container_title Biochemical journal
container_volume 449
creator Fonseca, Bruno M
Paquete, Catarina M
Neto, Sónia E
Pacheco, Isabel
Soares, Cláudio M
Louro, Ricardo O
description Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.
doi_str_mv 10.1042/BJ20121467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237091870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237091870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</originalsourceid><addsrcrecordid>eNpFkEtLw0AURgdRbK1u_AEySxGi8yKTuNPikxZBuw83kxsTSTLpzNTSf29f6upuDof7HULOObvmTImb-1fBuOAq1gdkyJVmUaJFckiGTMQqipngA3Li_RdjXDHFjslASBZrmaRDMp_WXUFDhfQT-ltqVsGaytkWad0FdGBCbTtPHX4jNBQbNMHZjvYQqiWsPAXjrPdbQY-u7hvwLbUl_ahwCR02DVDbYV1g52tPp-8RPyVHJTQez_Z3RGaPD7PxczR5e3oZ300iIxIdolQaSArEmCkOXAqTp7kspEaDAlFqKbQAWC-MJSRxmYJiUObGoFGqSBM5Ipc7be_sfIE-ZG3tzeahDu3CZ1xIzVKeaLZGr3bodovDMutd3YJbZZxlm8LZf-E1fLH3LvIWiz_0N6n8AS8rd3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237091870</pqid></control><display><type>article</type><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</creator><creatorcontrib>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</creatorcontrib><description>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20121467</identifier><identifier>PMID: 23067389</identifier><language>eng</language><publisher>England</publisher><subject>Biological Transport, Active - physiology ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; Cytochromes c - chemistry ; Cytochromes c - metabolism ; Electron Transport - physiology ; Extracellular Space - enzymology ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Periplasm - enzymology ; Protein Binding - physiology ; Protein Interaction Mapping ; Protein Stability ; Protons ; Shewanella - enzymology ; Signal Transduction - physiology ; Surface Properties</subject><ispartof>Biochemical journal, 2013-01, Vol.449 (1), p.101-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</citedby><cites>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23067389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fonseca, Bruno M</creatorcontrib><creatorcontrib>Paquete, Catarina M</creatorcontrib><creatorcontrib>Neto, Sónia E</creatorcontrib><creatorcontrib>Pacheco, Isabel</creatorcontrib><creatorcontrib>Soares, Cláudio M</creatorcontrib><creatorcontrib>Louro, Ricardo O</creatorcontrib><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</description><subject>Biological Transport, Active - physiology</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>Cytochromes c - chemistry</subject><subject>Cytochromes c - metabolism</subject><subject>Electron Transport - physiology</subject><subject>Extracellular Space - enzymology</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Periplasm - enzymology</subject><subject>Protein Binding - physiology</subject><subject>Protein Interaction Mapping</subject><subject>Protein Stability</subject><subject>Protons</subject><subject>Shewanella - enzymology</subject><subject>Signal Transduction - physiology</subject><subject>Surface Properties</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLw0AURgdRbK1u_AEySxGi8yKTuNPikxZBuw83kxsTSTLpzNTSf29f6upuDof7HULOObvmTImb-1fBuOAq1gdkyJVmUaJFckiGTMQqipngA3Li_RdjXDHFjslASBZrmaRDMp_WXUFDhfQT-ltqVsGaytkWad0FdGBCbTtPHX4jNBQbNMHZjvYQqiWsPAXjrPdbQY-u7hvwLbUl_ahwCR02DVDbYV1g52tPp-8RPyVHJTQez_Z3RGaPD7PxczR5e3oZ300iIxIdolQaSArEmCkOXAqTp7kspEaDAlFqKbQAWC-MJSRxmYJiUObGoFGqSBM5Ipc7be_sfIE-ZG3tzeahDu3CZ1xIzVKeaLZGr3bodovDMutd3YJbZZxlm8LZf-E1fLH3LvIWiz_0N6n8AS8rd3w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Fonseca, Bruno M</creator><creator>Paquete, Catarina M</creator><creator>Neto, Sónia E</creator><creator>Pacheco, Isabel</creator><creator>Soares, Cláudio M</creator><creator>Louro, Ricardo O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><author>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Transport, Active - physiology</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>Cytochromes c - chemistry</topic><topic>Cytochromes c - metabolism</topic><topic>Electron Transport - physiology</topic><topic>Extracellular Space - enzymology</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Periplasm - enzymology</topic><topic>Protein Binding - physiology</topic><topic>Protein Interaction Mapping</topic><topic>Protein Stability</topic><topic>Protons</topic><topic>Shewanella - enzymology</topic><topic>Signal Transduction - physiology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, Bruno M</creatorcontrib><creatorcontrib>Paquete, Catarina M</creatorcontrib><creatorcontrib>Neto, Sónia E</creatorcontrib><creatorcontrib>Pacheco, Isabel</creatorcontrib><creatorcontrib>Soares, Cláudio M</creatorcontrib><creatorcontrib>Louro, Ricardo O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, Bruno M</au><au>Paquete, Catarina M</au><au>Neto, Sónia E</au><au>Pacheco, Isabel</au><au>Soares, Cláudio M</au><au>Louro, Ricardo O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>449</volume><issue>1</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</abstract><cop>England</cop><pmid>23067389</pmid><doi>10.1042/BJ20121467</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2013-01, Vol.449 (1), p.101-108
issn 0264-6021
1470-8728
language eng
recordid cdi_proquest_miscellaneous_1237091870
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biological Transport, Active - physiology
Cytochrome c Group - chemistry
Cytochrome c Group - metabolism
Cytochromes c - chemistry
Cytochromes c - metabolism
Electron Transport - physiology
Extracellular Space - enzymology
Oxidation-Reduction
Oxidoreductases - chemistry
Oxidoreductases - metabolism
Periplasm - enzymology
Protein Binding - physiology
Protein Interaction Mapping
Protein Stability
Protons
Shewanella - enzymology
Signal Transduction - physiology
Surface Properties
title Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mind%20the%20gap:%20cytochrome%20interactions%20reveal%20electron%20pathways%20across%20the%20periplasm%20of%20Shewanella%20oneidensis%20MR-1&rft.jtitle=Biochemical%20journal&rft.au=Fonseca,%20Bruno%20M&rft.date=2013-01-01&rft.volume=449&rft.issue=1&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20121467&rft_dat=%3Cproquest_cross%3E1237091870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237091870&rft_id=info:pmid/23067389&rfr_iscdi=true