Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1
Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic pr...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2013-01, Vol.449 (1), p.101-108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Biochemical journal |
container_volume | 449 |
creator | Fonseca, Bruno M Paquete, Catarina M Neto, Sónia E Pacheco, Isabel Soares, Cláudio M Louro, Ricardo O |
description | Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions. |
doi_str_mv | 10.1042/BJ20121467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237091870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237091870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</originalsourceid><addsrcrecordid>eNpFkEtLw0AURgdRbK1u_AEySxGi8yKTuNPikxZBuw83kxsTSTLpzNTSf29f6upuDof7HULOObvmTImb-1fBuOAq1gdkyJVmUaJFckiGTMQqipngA3Li_RdjXDHFjslASBZrmaRDMp_WXUFDhfQT-ltqVsGaytkWad0FdGBCbTtPHX4jNBQbNMHZjvYQqiWsPAXjrPdbQY-u7hvwLbUl_ahwCR02DVDbYV1g52tPp-8RPyVHJTQez_Z3RGaPD7PxczR5e3oZ300iIxIdolQaSArEmCkOXAqTp7kspEaDAlFqKbQAWC-MJSRxmYJiUObGoFGqSBM5Ipc7be_sfIE-ZG3tzeahDu3CZ1xIzVKeaLZGr3bodovDMutd3YJbZZxlm8LZf-E1fLH3LvIWiz_0N6n8AS8rd3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237091870</pqid></control><display><type>article</type><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</creator><creatorcontrib>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</creatorcontrib><description>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20121467</identifier><identifier>PMID: 23067389</identifier><language>eng</language><publisher>England</publisher><subject>Biological Transport, Active - physiology ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; Cytochromes c - chemistry ; Cytochromes c - metabolism ; Electron Transport - physiology ; Extracellular Space - enzymology ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxidoreductases - metabolism ; Periplasm - enzymology ; Protein Binding - physiology ; Protein Interaction Mapping ; Protein Stability ; Protons ; Shewanella - enzymology ; Signal Transduction - physiology ; Surface Properties</subject><ispartof>Biochemical journal, 2013-01, Vol.449 (1), p.101-108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</citedby><cites>FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23067389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fonseca, Bruno M</creatorcontrib><creatorcontrib>Paquete, Catarina M</creatorcontrib><creatorcontrib>Neto, Sónia E</creatorcontrib><creatorcontrib>Pacheco, Isabel</creatorcontrib><creatorcontrib>Soares, Cláudio M</creatorcontrib><creatorcontrib>Louro, Ricardo O</creatorcontrib><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</description><subject>Biological Transport, Active - physiology</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>Cytochromes c - chemistry</subject><subject>Cytochromes c - metabolism</subject><subject>Electron Transport - physiology</subject><subject>Extracellular Space - enzymology</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - metabolism</subject><subject>Periplasm - enzymology</subject><subject>Protein Binding - physiology</subject><subject>Protein Interaction Mapping</subject><subject>Protein Stability</subject><subject>Protons</subject><subject>Shewanella - enzymology</subject><subject>Signal Transduction - physiology</subject><subject>Surface Properties</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLw0AURgdRbK1u_AEySxGi8yKTuNPikxZBuw83kxsTSTLpzNTSf29f6upuDof7HULOObvmTImb-1fBuOAq1gdkyJVmUaJFckiGTMQqipngA3Li_RdjXDHFjslASBZrmaRDMp_WXUFDhfQT-ltqVsGaytkWad0FdGBCbTtPHX4jNBQbNMHZjvYQqiWsPAXjrPdbQY-u7hvwLbUl_ahwCR02DVDbYV1g52tPp-8RPyVHJTQez_Z3RGaPD7PxczR5e3oZ300iIxIdolQaSArEmCkOXAqTp7kspEaDAlFqKbQAWC-MJSRxmYJiUObGoFGqSBM5Ipc7be_sfIE-ZG3tzeahDu3CZ1xIzVKeaLZGr3bodovDMutd3YJbZZxlm8LZf-E1fLH3LvIWiz_0N6n8AS8rd3w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Fonseca, Bruno M</creator><creator>Paquete, Catarina M</creator><creator>Neto, Sónia E</creator><creator>Pacheco, Isabel</creator><creator>Soares, Cláudio M</creator><creator>Louro, Ricardo O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</title><author>Fonseca, Bruno M ; Paquete, Catarina M ; Neto, Sónia E ; Pacheco, Isabel ; Soares, Cláudio M ; Louro, Ricardo O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-93ca8dee6041a132cb9b3d37ece2ee373272aa02663a86f9a40afbccec44d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Transport, Active - physiology</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>Cytochromes c - chemistry</topic><topic>Cytochromes c - metabolism</topic><topic>Electron Transport - physiology</topic><topic>Extracellular Space - enzymology</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - metabolism</topic><topic>Periplasm - enzymology</topic><topic>Protein Binding - physiology</topic><topic>Protein Interaction Mapping</topic><topic>Protein Stability</topic><topic>Protons</topic><topic>Shewanella - enzymology</topic><topic>Signal Transduction - physiology</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, Bruno M</creatorcontrib><creatorcontrib>Paquete, Catarina M</creatorcontrib><creatorcontrib>Neto, Sónia E</creatorcontrib><creatorcontrib>Pacheco, Isabel</creatorcontrib><creatorcontrib>Soares, Cláudio M</creatorcontrib><creatorcontrib>Louro, Ricardo O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, Bruno M</au><au>Paquete, Catarina M</au><au>Neto, Sónia E</au><au>Pacheco, Isabel</au><au>Soares, Cláudio M</au><au>Louro, Ricardo O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>449</volume><issue>1</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surface. Lack of knowledge on how these electrons flow across the periplasmic space is one of the unresolved issues related with extracellular electron transfer. Using NMR to probe protein-protein interactions, kinetic measurements of electron transfer and electrostatic calculations, we were able to identify protein partners and their docking sites, and determine the dissociation constants. The results showed that both STC (small tetrahaem cytochrome c) and FccA (flavocytochrome c) interact with their redox partners, CymA and MtrA, through a single haem, avoiding the establishment of stable redox complexes capable of spanning the periplasmic space. Furthermore, we verified that the most abundant periplasmic cytochromes STC, FccA and ScyA (monohaem cytochrome c5) do not interact with each other and this is likely to be the consequence of negative surface charges in these proteins. This reveals the co-existence of two non-mixing redox pathways that lead to extracellular electron transfer in S. oneidensis MR-1 established through transient protein interactions.</abstract><cop>England</cop><pmid>23067389</pmid><doi>10.1042/BJ20121467</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2013-01, Vol.449 (1), p.101-108 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_proquest_miscellaneous_1237091870 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biological Transport, Active - physiology Cytochrome c Group - chemistry Cytochrome c Group - metabolism Cytochromes c - chemistry Cytochromes c - metabolism Electron Transport - physiology Extracellular Space - enzymology Oxidation-Reduction Oxidoreductases - chemistry Oxidoreductases - metabolism Periplasm - enzymology Protein Binding - physiology Protein Interaction Mapping Protein Stability Protons Shewanella - enzymology Signal Transduction - physiology Surface Properties |
title | Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mind%20the%20gap:%20cytochrome%20interactions%20reveal%20electron%20pathways%20across%20the%20periplasm%20of%20Shewanella%20oneidensis%20MR-1&rft.jtitle=Biochemical%20journal&rft.au=Fonseca,%20Bruno%20M&rft.date=2013-01-01&rft.volume=449&rft.issue=1&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20121467&rft_dat=%3Cproquest_cross%3E1237091870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237091870&rft_id=info:pmid/23067389&rfr_iscdi=true |