Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?

Abstract Background Neuronal plasticity is the physiological correlate of learning and memory. In animal experiments, synaptic (i.e. long-term potentiation (LTP) and depression (LTD)) and intrinsic plasticity are distinguished. In human motor cortex, cortical plasticity can be demonstrated using tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain stimulation 2012-10, Vol.5 (4), p.586-593
Hauptverfasser: Delvendahl, Igor, Jung, Nikolai H, Kuhnke, Nicola G, Ziemann, Ulf, Mall, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 4
container_start_page 586
container_title Brain stimulation
container_volume 5
creator Delvendahl, Igor
Jung, Nikolai H
Kuhnke, Nicola G
Ziemann, Ulf
Mall, Volker
description Abstract Background Neuronal plasticity is the physiological correlate of learning and memory. In animal experiments, synaptic (i.e. long-term potentiation (LTP) and depression (LTD)) and intrinsic plasticity are distinguished. In human motor cortex, cortical plasticity can be demonstrated using transcranial magnetic stimulation (TMS). Changes in motor-evoked potential (MEP) amplitudes most likely represent synaptic plasticity and are thus termed LTP-like and LTD-like plasticity. Objective/hypothesis We investigated the role of changes of motor threshold and their relation to changes of MEP amplitudes. Methods We induced plasticity by paired associative stimulation (PAS) with 25 ms or 10 ms inter-stimulus interval or by motor practice (MP) in 64 healthy subjects aged 18–31 years (median 24.0). Results We observed changes of MEP amplitudes and motor threshold after PAS[25], PAS[10] and MP. In all three protocols, long-term individual changes in MEP amplitude were inversely correlated to changes in motor threshold (PAS[25]: P  = .003, n  = 36; PAS[10]: P  = .038, n  = 19; MP: P  = .041, n  = 19). Conclusion We conclude that changes of MEP amplitudes and MT represent two indices of motor cortex plasticity. Whereas increases and decreases in MEP amplitude are assumed to represent LTP-like or LTD-like synaptic plasticity of motor cortex output neurons, changes of MT may be considered as a correlate of intrinsic plasticity.
doi_str_mv 10.1016/j.brs.2011.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237083835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1935861X11001689</els_id><sourcerecordid>1237083835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4c6a3242428457e6a27511d03766a8a452e7e5c889ee4a66a756d832cb898a2f3</originalsourceid><addsrcrecordid>eNp9Uk2KFDEULsTBGUcP4EaydFNtUkkqKQRlGPwZGFBQwV1IJ6_p9KSSMkkN9s69Sy_gWeYonmTSdqvgQvIg4fH9kO-9pnlE8IJg0j_dLJYpLzpMyKIWxvxOc0Kk6FsmOLtb3wPlrezJp-Pmfs6bChgGKe41x13HGOe0P2m-vfM6F2dc2aK4QmMsMaGyTpDX0Vukg933WriOV2DRFAuE4rRHepy8K7MF9PPrd3RWYRZ81bj54UJJLmRnftHzNuipOqDpr5MLaD2POhz8TEwFvrx40ByttM_w8HCfNh9fvfxw_qa9fPv64vzssjVMsNIy02vasXok4wJ63QlOiMVU9L2WmvEOBHAj5QDAdO0J3ltJO7OUg9Tdip42T_a6U4qfZ8hFjS4b8F4HiHNWpKMCSyopr1Cyh5oUc06wUlNyo05bRbDazUBtVJ2B2s1A1aoRV87jg_y8HMH-YfwOvQKe7QFQP3ntIKlsHAQD1iUwRdno_iv__B-28S44o_0VbCFv4pxCTU8RlTuF1fvdEux2gBBcBeVAbwHr4K_u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237083835</pqid></control><display><type>article</type><title>Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Delvendahl, Igor ; Jung, Nikolai H ; Kuhnke, Nicola G ; Ziemann, Ulf ; Mall, Volker</creator><creatorcontrib>Delvendahl, Igor ; Jung, Nikolai H ; Kuhnke, Nicola G ; Ziemann, Ulf ; Mall, Volker</creatorcontrib><description>Abstract Background Neuronal plasticity is the physiological correlate of learning and memory. In animal experiments, synaptic (i.e. long-term potentiation (LTP) and depression (LTD)) and intrinsic plasticity are distinguished. In human motor cortex, cortical plasticity can be demonstrated using transcranial magnetic stimulation (TMS). Changes in motor-evoked potential (MEP) amplitudes most likely represent synaptic plasticity and are thus termed LTP-like and LTD-like plasticity. Objective/hypothesis We investigated the role of changes of motor threshold and their relation to changes of MEP amplitudes. Methods We induced plasticity by paired associative stimulation (PAS) with 25 ms or 10 ms inter-stimulus interval or by motor practice (MP) in 64 healthy subjects aged 18–31 years (median 24.0). Results We observed changes of MEP amplitudes and motor threshold after PAS[25], PAS[10] and MP. In all three protocols, long-term individual changes in MEP amplitude were inversely correlated to changes in motor threshold (PAS[25]: P  = .003, n  = 36; PAS[10]: P  = .038, n  = 19; MP: P  = .041, n  = 19). Conclusion We conclude that changes of MEP amplitudes and MT represent two indices of motor cortex plasticity. Whereas increases and decreases in MEP amplitude are assumed to represent LTP-like or LTD-like synaptic plasticity of motor cortex output neurons, changes of MT may be considered as a correlate of intrinsic plasticity.</description><identifier>ISSN: 1935-861X</identifier><identifier>EISSN: 1876-4754</identifier><identifier>DOI: 10.1016/j.brs.2011.11.005</identifier><identifier>PMID: 22445536</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Electric Stimulation ; Electromyography ; Evoked Potentials, Motor - physiology ; Female ; Humans ; Male ; Median Nerve - physiology ; Motor cortex ; Motor Cortex - physiology ; Muscle, Skeletal - physiology ; Neurology ; Neuronal Plasticity - physiology ; Reaction Time - physiology ; Synaptic plasticity ; Transcranial Magnetic Stimulation</subject><ispartof>Brain stimulation, 2012-10, Vol.5 (4), p.586-593</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4c6a3242428457e6a27511d03766a8a452e7e5c889ee4a66a756d832cb898a2f3</citedby><cites>FETCH-LOGICAL-c474t-4c6a3242428457e6a27511d03766a8a452e7e5c889ee4a66a756d832cb898a2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brs.2011.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22445536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delvendahl, Igor</creatorcontrib><creatorcontrib>Jung, Nikolai H</creatorcontrib><creatorcontrib>Kuhnke, Nicola G</creatorcontrib><creatorcontrib>Ziemann, Ulf</creatorcontrib><creatorcontrib>Mall, Volker</creatorcontrib><title>Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?</title><title>Brain stimulation</title><addtitle>Brain Stimul</addtitle><description>Abstract Background Neuronal plasticity is the physiological correlate of learning and memory. In animal experiments, synaptic (i.e. long-term potentiation (LTP) and depression (LTD)) and intrinsic plasticity are distinguished. In human motor cortex, cortical plasticity can be demonstrated using transcranial magnetic stimulation (TMS). Changes in motor-evoked potential (MEP) amplitudes most likely represent synaptic plasticity and are thus termed LTP-like and LTD-like plasticity. Objective/hypothesis We investigated the role of changes of motor threshold and their relation to changes of MEP amplitudes. Methods We induced plasticity by paired associative stimulation (PAS) with 25 ms or 10 ms inter-stimulus interval or by motor practice (MP) in 64 healthy subjects aged 18–31 years (median 24.0). Results We observed changes of MEP amplitudes and motor threshold after PAS[25], PAS[10] and MP. In all three protocols, long-term individual changes in MEP amplitude were inversely correlated to changes in motor threshold (PAS[25]: P  = .003, n  = 36; PAS[10]: P  = .038, n  = 19; MP: P  = .041, n  = 19). Conclusion We conclude that changes of MEP amplitudes and MT represent two indices of motor cortex plasticity. Whereas increases and decreases in MEP amplitude are assumed to represent LTP-like or LTD-like synaptic plasticity of motor cortex output neurons, changes of MT may be considered as a correlate of intrinsic plasticity.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Electric Stimulation</subject><subject>Electromyography</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Median Nerve - physiology</subject><subject>Motor cortex</subject><subject>Motor Cortex - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Reaction Time - physiology</subject><subject>Synaptic plasticity</subject><subject>Transcranial Magnetic Stimulation</subject><issn>1935-861X</issn><issn>1876-4754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uk2KFDEULsTBGUcP4EaydFNtUkkqKQRlGPwZGFBQwV1IJ6_p9KSSMkkN9s69Sy_gWeYonmTSdqvgQvIg4fH9kO-9pnlE8IJg0j_dLJYpLzpMyKIWxvxOc0Kk6FsmOLtb3wPlrezJp-Pmfs6bChgGKe41x13HGOe0P2m-vfM6F2dc2aK4QmMsMaGyTpDX0Vukg933WriOV2DRFAuE4rRHepy8K7MF9PPrd3RWYRZ81bj54UJJLmRnftHzNuipOqDpr5MLaD2POhz8TEwFvrx40ByttM_w8HCfNh9fvfxw_qa9fPv64vzssjVMsNIy02vasXok4wJ63QlOiMVU9L2WmvEOBHAj5QDAdO0J3ltJO7OUg9Tdip42T_a6U4qfZ8hFjS4b8F4HiHNWpKMCSyopr1Cyh5oUc06wUlNyo05bRbDazUBtVJ2B2s1A1aoRV87jg_y8HMH-YfwOvQKe7QFQP3ntIKlsHAQD1iUwRdno_iv__B-28S44o_0VbCFv4pxCTU8RlTuF1fvdEux2gBBcBeVAbwHr4K_u</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Delvendahl, Igor</creator><creator>Jung, Nikolai H</creator><creator>Kuhnke, Nicola G</creator><creator>Ziemann, Ulf</creator><creator>Mall, Volker</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121001</creationdate><title>Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?</title><author>Delvendahl, Igor ; Jung, Nikolai H ; Kuhnke, Nicola G ; Ziemann, Ulf ; Mall, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4c6a3242428457e6a27511d03766a8a452e7e5c889ee4a66a756d832cb898a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Electric Stimulation</topic><topic>Electromyography</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Median Nerve - physiology</topic><topic>Motor cortex</topic><topic>Motor Cortex - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Reaction Time - physiology</topic><topic>Synaptic plasticity</topic><topic>Transcranial Magnetic Stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delvendahl, Igor</creatorcontrib><creatorcontrib>Jung, Nikolai H</creatorcontrib><creatorcontrib>Kuhnke, Nicola G</creatorcontrib><creatorcontrib>Ziemann, Ulf</creatorcontrib><creatorcontrib>Mall, Volker</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain stimulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delvendahl, Igor</au><au>Jung, Nikolai H</au><au>Kuhnke, Nicola G</au><au>Ziemann, Ulf</au><au>Mall, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?</atitle><jtitle>Brain stimulation</jtitle><addtitle>Brain Stimul</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>5</volume><issue>4</issue><spage>586</spage><epage>593</epage><pages>586-593</pages><issn>1935-861X</issn><eissn>1876-4754</eissn><abstract>Abstract Background Neuronal plasticity is the physiological correlate of learning and memory. In animal experiments, synaptic (i.e. long-term potentiation (LTP) and depression (LTD)) and intrinsic plasticity are distinguished. In human motor cortex, cortical plasticity can be demonstrated using transcranial magnetic stimulation (TMS). Changes in motor-evoked potential (MEP) amplitudes most likely represent synaptic plasticity and are thus termed LTP-like and LTD-like plasticity. Objective/hypothesis We investigated the role of changes of motor threshold and their relation to changes of MEP amplitudes. Methods We induced plasticity by paired associative stimulation (PAS) with 25 ms or 10 ms inter-stimulus interval or by motor practice (MP) in 64 healthy subjects aged 18–31 years (median 24.0). Results We observed changes of MEP amplitudes and motor threshold after PAS[25], PAS[10] and MP. In all three protocols, long-term individual changes in MEP amplitude were inversely correlated to changes in motor threshold (PAS[25]: P  = .003, n  = 36; PAS[10]: P  = .038, n  = 19; MP: P  = .041, n  = 19). Conclusion We conclude that changes of MEP amplitudes and MT represent two indices of motor cortex plasticity. Whereas increases and decreases in MEP amplitude are assumed to represent LTP-like or LTD-like synaptic plasticity of motor cortex output neurons, changes of MT may be considered as a correlate of intrinsic plasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22445536</pmid><doi>10.1016/j.brs.2011.11.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1935-861X
ispartof Brain stimulation, 2012-10, Vol.5 (4), p.586-593
issn 1935-861X
1876-4754
language eng
recordid cdi_proquest_miscellaneous_1237083835
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adolescent
Adult
Electric Stimulation
Electromyography
Evoked Potentials, Motor - physiology
Female
Humans
Male
Median Nerve - physiology
Motor cortex
Motor Cortex - physiology
Muscle, Skeletal - physiology
Neurology
Neuronal Plasticity - physiology
Reaction Time - physiology
Synaptic plasticity
Transcranial Magnetic Stimulation
title Plasticity of motor threshold and motor-evoked potential amplitude – A model of intrinsic and synaptic plasticity in human motor cortex?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20motor%20threshold%20and%20motor-evoked%20potential%20amplitude%20%E2%80%93%20A%20model%20of%C2%A0intrinsic%20and%20synaptic%20plasticity%20in%20human%20motor%20cortex?&rft.jtitle=Brain%20stimulation&rft.au=Delvendahl,%20Igor&rft.date=2012-10-01&rft.volume=5&rft.issue=4&rft.spage=586&rft.epage=593&rft.pages=586-593&rft.issn=1935-861X&rft.eissn=1876-4754&rft_id=info:doi/10.1016/j.brs.2011.11.005&rft_dat=%3Cproquest_cross%3E1237083835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237083835&rft_id=info:pmid/22445536&rft_els_id=S1935861X11001689&rfr_iscdi=true