New gasochromic system: nanoparticles in liquid

In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2012-03, Vol.14 (4), p.1-10, Article 803
Hauptverfasser: Ranjbar, M., Kalhori, H., Mahdavi, S. M., Iraji zad, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 14
creator Ranjbar, M.
Kalhori, H.
Mahdavi, S. M.
Iraji zad, A.
description In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core–shell Pd/WO 3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of optical density difference (∆OD) were measured at constant wavelength of 632.8 nm by alternative bubbling hydrogen or oxygen gases. The ∆OD in the first coloring cycles were not completely reversible owing to the presence of some unreacted PdCl 2 . The further coloring bleaching indicates a normal gasochromic behavior.
doi_str_mv 10.1007/s11051-012-0803-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221892570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221892570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e3fa49e6e9f197ba2397bfa20662f5b5a4f912668db36291d5d38428166754da3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AGzexuXlN4k6KLyi6UXAX0pmkTplHm8wg8-9NGRcieBf33sV3DoeD0CWQGyAkX0QAIgAToJgowvB4hGYgcoqVlh_H6WdKYZJLforOYtwSApJqOkOLF_eVbWzsis_QNVWRxTH2rrnNWtt2Oxv6qqhdzKo2q6v9UJXn6MTbOrqLnztH7w_3b8snvHp9fF7erXDBuO6xY95y7aTTHnS-tpSl7S0lUlIv1sJyr4FKqco1S0GgFCVTnCqQMhe8tGyOriffXej2g4u9aapYuLq2reuGaIBSUJqKnCT06g-67YbQpnQG0ijBBOeJgokqQhdjcN7sQtXYMBog5lChmSo0qUJzqNCMSUMnTUxsu3Hhl_O_om91rHJJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1111853544</pqid></control><display><type>article</type><title>New gasochromic system: nanoparticles in liquid</title><source>SpringerLink Journals</source><creator>Ranjbar, M. ; Kalhori, H. ; Mahdavi, S. M. ; Iraji zad, A.</creator><creatorcontrib>Ranjbar, M. ; Kalhori, H. ; Mahdavi, S. M. ; Iraji zad, A.</creatorcontrib><description>In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core–shell Pd/WO 3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of optical density difference (∆OD) were measured at constant wavelength of 632.8 nm by alternative bubbling hydrogen or oxygen gases. The ∆OD in the first coloring cycles were not completely reversible owing to the presence of some unreacted PdCl 2 . The further coloring bleaching indicates a normal gasochromic behavior.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-012-0803-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Absorption ; Bleaching ; Bubbling ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coloring ; Inorganic Chemistry ; Lasers ; Liquids ; Materials Science ; Nanocrystals ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Palladium ; Photonics ; Physical Chemistry ; Research Paper ; Tungsten ; Tungsten oxides</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-03, Vol.14 (4), p.1-10, Article 803</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e3fa49e6e9f197ba2397bfa20662f5b5a4f912668db36291d5d38428166754da3</citedby><cites>FETCH-LOGICAL-c349t-e3fa49e6e9f197ba2397bfa20662f5b5a4f912668db36291d5d38428166754da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-012-0803-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-012-0803-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Kalhori, H.</creatorcontrib><creatorcontrib>Mahdavi, S. M.</creatorcontrib><creatorcontrib>Iraji zad, A.</creatorcontrib><title>New gasochromic system: nanoparticles in liquid</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core–shell Pd/WO 3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of optical density difference (∆OD) were measured at constant wavelength of 632.8 nm by alternative bubbling hydrogen or oxygen gases. The ∆OD in the first coloring cycles were not completely reversible owing to the presence of some unreacted PdCl 2 . The further coloring bleaching indicates a normal gasochromic behavior.</description><subject>Absorption</subject><subject>Bleaching</subject><subject>Bubbling</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coloring</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Liquids</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Palladium</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>Tungsten</subject><subject>Tungsten oxides</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AGzexuXlN4k6KLyi6UXAX0pmkTplHm8wg8-9NGRcieBf33sV3DoeD0CWQGyAkX0QAIgAToJgowvB4hGYgcoqVlh_H6WdKYZJLforOYtwSApJqOkOLF_eVbWzsis_QNVWRxTH2rrnNWtt2Oxv6qqhdzKo2q6v9UJXn6MTbOrqLnztH7w_3b8snvHp9fF7erXDBuO6xY95y7aTTHnS-tpSl7S0lUlIv1sJyr4FKqco1S0GgFCVTnCqQMhe8tGyOriffXej2g4u9aapYuLq2reuGaIBSUJqKnCT06g-67YbQpnQG0ijBBOeJgokqQhdjcN7sQtXYMBog5lChmSo0qUJzqNCMSUMnTUxsu3Hhl_O_om91rHJJ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Ranjbar, M.</creator><creator>Kalhori, H.</creator><creator>Mahdavi, S. M.</creator><creator>Iraji zad, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120301</creationdate><title>New gasochromic system: nanoparticles in liquid</title><author>Ranjbar, M. ; Kalhori, H. ; Mahdavi, S. M. ; Iraji zad, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e3fa49e6e9f197ba2397bfa20662f5b5a4f912668db36291d5d38428166754da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Absorption</topic><topic>Bleaching</topic><topic>Bubbling</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coloring</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Liquids</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Palladium</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>Tungsten</topic><topic>Tungsten oxides</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjbar, M.</creatorcontrib><creatorcontrib>Kalhori, H.</creatorcontrib><creatorcontrib>Mahdavi, S. M.</creatorcontrib><creatorcontrib>Iraji zad, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjbar, M.</au><au>Kalhori, H.</au><au>Mahdavi, S. M.</au><au>Iraji zad, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New gasochromic system: nanoparticles in liquid</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>803</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>In this study, WO 3 nanocrystallites were first produced by laser ablation of W target in deionised water. To synthesize palladium, a PdCl 2 solution (0.2 g/L) was added to the liquid. Transmission electron microscope revealed successful synthesis of tungsten oxide nanocrystallites along with the production of Pd and core–shell Pd/WO 3 nanoparticles. Gasochromic behavior was examined by hydrogen bubbling into Pd/WO 3 liquid in which a transition to blue absorbing state was observed. Optical absorption spectra of the colored liquid represented different sharp small polaron absorbing peaks below 3 eV and the peaks intensity was observed to be varied with Pd:WO 3 ratio. Time variations of optical density difference (∆OD) were measured at constant wavelength of 632.8 nm by alternative bubbling hydrogen or oxygen gases. The ∆OD in the first coloring cycles were not completely reversible owing to the presence of some unreacted PdCl 2 . The further coloring bleaching indicates a normal gasochromic behavior.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-012-0803-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012-03, Vol.14 (4), p.1-10, Article 803
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_miscellaneous_1221892570
source SpringerLink Journals
subjects Absorption
Bleaching
Bubbling
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coloring
Inorganic Chemistry
Lasers
Liquids
Materials Science
Nanocrystals
Nanoparticles
Nanotechnology
Optical Devices
Optics
Palladium
Photonics
Physical Chemistry
Research Paper
Tungsten
Tungsten oxides
title New gasochromic system: nanoparticles in liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20gasochromic%20system:%20nanoparticles%20in%20liquid&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Ranjbar,%20M.&rft.date=2012-03-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=803&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-012-0803-y&rft_dat=%3Cproquest_cross%3E1221892570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1111853544&rft_id=info:pmid/&rfr_iscdi=true