Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection

We propose a hybrid missing data imputation technique using positive selection and correlation-based feature selection for insurance data. The hybrid is used to help supervised learning methods improve their classification accuracy and resilience in the presence of increasing missing data. The posit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current science (Bangalore) 2012-09, Vol.103 (6), p.697-705
Hauptverfasser: Duma, Mlungisi, Twala, Bhekisipho, Nelwamondo, Fulufhelo V., Marwala, Tshilidzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 6
container_start_page 697
container_title Current science (Bangalore)
container_volume 103
creator Duma, Mlungisi
Twala, Bhekisipho
Nelwamondo, Fulufhelo V.
Marwala, Tshilidzi
description We propose a hybrid missing data imputation technique using positive selection and correlation-based feature selection for insurance data. The hybrid is used to help supervised learning methods improve their classification accuracy and resilience in the presence of increasing missing data. The positive selection algorithm searches for potential candidates for imputation and the correlation-based feature selection method searches for attributes have a significant effect on the target outcome. The imputation is performed only on those attributes that have an impact on the target outcome. The results show that the classification accuracy and resilience of supervised learning methods improve significantly when applied with the imputation strategy under these assumptions.
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221890791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24088803</jstor_id><sourcerecordid>24088803</sourcerecordid><originalsourceid>FETCH-LOGICAL-j210t-3e45f1680c2a6ebc768781b521ab2d36236c601d93acdbe5416bb27c3582c0843</originalsourceid><addsrcrecordid>eNpNj8tqwzAQRb1ooWnaTyho2Y1BDz_kZQl9QSBdtGszksaJUtlyJbmQL-pv1km6KAzMDJx74F5kC0oZy4Vs2FV2HeOeUi44bRbZzxuEZMER249TgmT9QJI_fsF_IxkDGquTnc_eG3TODltih3niFGDQSIKNn0Q7iNF2Vp8FUzxiQHYHFawho4_2pIjoUJ8IcFsfbNr1BAZDtA8B3SmbK4hoSIeQpvAvcZNdduAi3v7tZfbx9Pi-esnXm-fX1cM633NGUy6wKDtWSao5VKh0XclaMlVyBoobUXFR6Yoy0wjQRmFZsEopXmtRSq6pLMQyuz975_5fE8bU9jbquTgM6KfYMs6ZbGjdsBm9O6P7mHxox2B7CIeWF1RKSYX4BU-wd-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221890791</pqid></control><display><type>article</type><title>Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection</title><source>Jstor Complete Legacy</source><source>EZB Electronic Journals Library</source><creator>Duma, Mlungisi ; Twala, Bhekisipho ; Nelwamondo, Fulufhelo V. ; Marwala, Tshilidzi</creator><creatorcontrib>Duma, Mlungisi ; Twala, Bhekisipho ; Nelwamondo, Fulufhelo V. ; Marwala, Tshilidzi</creatorcontrib><description>We propose a hybrid missing data imputation technique using positive selection and correlation-based feature selection for insurance data. The hybrid is used to help supervised learning methods improve their classification accuracy and resilience in the presence of increasing missing data. The positive selection algorithm searches for potential candidates for imputation and the correlation-based feature selection method searches for attributes have a significant effect on the target outcome. The imputation is performed only on those attributes that have an impact on the target outcome. The results show that the classification accuracy and resilience of supervised learning methods improve significantly when applied with the imputation strategy under these assumptions.</description><identifier>ISSN: 0011-3891</identifier><language>eng</language><publisher>Current Science Association</publisher><subject>Credit risk ; Data imputation ; Datasets ; Information classification ; Insurance risk ; Machine learning ; Missing data ; Positive selection ; Predictive modeling ; RESEARCH COMMUNICATIONS ; Sensors</subject><ispartof>Current science (Bangalore), 2012-09, Vol.103 (6), p.697-705</ispartof><rights>2012 Current Science Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24088803$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24088803$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,58017,58250</link.rule.ids></links><search><creatorcontrib>Duma, Mlungisi</creatorcontrib><creatorcontrib>Twala, Bhekisipho</creatorcontrib><creatorcontrib>Nelwamondo, Fulufhelo V.</creatorcontrib><creatorcontrib>Marwala, Tshilidzi</creatorcontrib><title>Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection</title><title>Current science (Bangalore)</title><description>We propose a hybrid missing data imputation technique using positive selection and correlation-based feature selection for insurance data. The hybrid is used to help supervised learning methods improve their classification accuracy and resilience in the presence of increasing missing data. The positive selection algorithm searches for potential candidates for imputation and the correlation-based feature selection method searches for attributes have a significant effect on the target outcome. The imputation is performed only on those attributes that have an impact on the target outcome. The results show that the classification accuracy and resilience of supervised learning methods improve significantly when applied with the imputation strategy under these assumptions.</description><subject>Credit risk</subject><subject>Data imputation</subject><subject>Datasets</subject><subject>Information classification</subject><subject>Insurance risk</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Positive selection</subject><subject>Predictive modeling</subject><subject>RESEARCH COMMUNICATIONS</subject><subject>Sensors</subject><issn>0011-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNj8tqwzAQRb1ooWnaTyho2Y1BDz_kZQl9QSBdtGszksaJUtlyJbmQL-pv1km6KAzMDJx74F5kC0oZy4Vs2FV2HeOeUi44bRbZzxuEZMER249TgmT9QJI_fsF_IxkDGquTnc_eG3TODltih3niFGDQSIKNn0Q7iNF2Vp8FUzxiQHYHFawho4_2pIjoUJ8IcFsfbNr1BAZDtA8B3SmbK4hoSIeQpvAvcZNdduAi3v7tZfbx9Pi-esnXm-fX1cM633NGUy6wKDtWSao5VKh0XclaMlVyBoobUXFR6Yoy0wjQRmFZsEopXmtRSq6pLMQyuz975_5fE8bU9jbquTgM6KfYMs6ZbGjdsBm9O6P7mHxox2B7CIeWF1RKSYX4BU-wd-Y</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Duma, Mlungisi</creator><creator>Twala, Bhekisipho</creator><creator>Nelwamondo, Fulufhelo V.</creator><creator>Marwala, Tshilidzi</creator><general>Current Science Association</general><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20120925</creationdate><title>Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection</title><author>Duma, Mlungisi ; Twala, Bhekisipho ; Nelwamondo, Fulufhelo V. ; Marwala, Tshilidzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j210t-3e45f1680c2a6ebc768781b521ab2d36236c601d93acdbe5416bb27c3582c0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Credit risk</topic><topic>Data imputation</topic><topic>Datasets</topic><topic>Information classification</topic><topic>Insurance risk</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Positive selection</topic><topic>Predictive modeling</topic><topic>RESEARCH COMMUNICATIONS</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duma, Mlungisi</creatorcontrib><creatorcontrib>Twala, Bhekisipho</creatorcontrib><creatorcontrib>Nelwamondo, Fulufhelo V.</creatorcontrib><creatorcontrib>Marwala, Tshilidzi</creatorcontrib><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Current science (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duma, Mlungisi</au><au>Twala, Bhekisipho</au><au>Nelwamondo, Fulufhelo V.</au><au>Marwala, Tshilidzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection</atitle><jtitle>Current science (Bangalore)</jtitle><date>2012-09-25</date><risdate>2012</risdate><volume>103</volume><issue>6</issue><spage>697</spage><epage>705</epage><pages>697-705</pages><issn>0011-3891</issn><abstract>We propose a hybrid missing data imputation technique using positive selection and correlation-based feature selection for insurance data. The hybrid is used to help supervised learning methods improve their classification accuracy and resilience in the presence of increasing missing data. The positive selection algorithm searches for potential candidates for imputation and the correlation-based feature selection method searches for attributes have a significant effect on the target outcome. The imputation is performed only on those attributes that have an impact on the target outcome. The results show that the classification accuracy and resilience of supervised learning methods improve significantly when applied with the imputation strategy under these assumptions.</abstract><pub>Current Science Association</pub><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-3891
ispartof Current science (Bangalore), 2012-09, Vol.103 (6), p.697-705
issn 0011-3891
language eng
recordid cdi_proquest_miscellaneous_1221890791
source Jstor Complete Legacy; EZB Electronic Journals Library
subjects Credit risk
Data imputation
Datasets
Information classification
Insurance risk
Machine learning
Missing data
Positive selection
Predictive modeling
RESEARCH COMMUNICATIONS
Sensors
title Partial imputation to improve predictive modelling in insurance risk classification using a hybrid positive selection algorithm and correlation-based feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20imputation%20to%20improve%20predictive%20modelling%20in%20insurance%20risk%20classification%20using%20a%20hybrid%20positive%20selection%20algorithm%20and%20correlation-based%20feature%20selection&rft.jtitle=Current%20science%20(Bangalore)&rft.au=Duma,%20Mlungisi&rft.date=2012-09-25&rft.volume=103&rft.issue=6&rft.spage=697&rft.epage=705&rft.pages=697-705&rft.issn=0011-3891&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E24088803%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221890791&rft_id=info:pmid/&rft_jstor_id=24088803&rfr_iscdi=true