Frequent Patterns mining in time-sensitive Data Stream

Mining frequent itemsets through static Databases has been extensively studied and used and is always considered a highly challenging task. For this reason it is interesting to extend it to data streams field. In the streaming case, the frequent patterns' mining has much more information to tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer science issues 2012-07, Vol.9 (4), p.117-117
Hauptverfasser: Gouider, Mohamed Salah, Zarrouk, Manel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 4
container_start_page 117
container_title International journal of computer science issues
container_volume 9
creator Gouider, Mohamed Salah
Zarrouk, Manel
description Mining frequent itemsets through static Databases has been extensively studied and used and is always considered a highly challenging task. For this reason it is interesting to extend it to data streams field. In the streaming case, the frequent patterns' mining has much more information to track and much greater complexity to manage. Infrequent items can become frequent later on and hence cannot be ignored. The output structure needs to be dynamically incremented to reflect the evolution of itemset frequencies over time. In this paper, we study this problem and specifically the methodology of mining time-sensitive data streams. We tried to improve an existing algorithm by increasing the temporal accuracy and discarding the out-of-date data by adding a new concept called the "Shaking Point". We presented as well some experiments illustrating the time and space required.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221887987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221887987</sourcerecordid><originalsourceid>FETCH-LOGICAL-p617-df838810842ced0ffdddb44c04dfed9c850321d2b7a02712f9b12294063a29b83</originalsourceid><addsrcrecordid>eNpdjsFKxDAURYMoOIzzDwE3bgp5SZq8LmV0VBhQcPYlbV4kQ5sZm9Tvt6BuvJt7F4fLuWArMI2uhEV9-bcR9DXb5HwUS3RtwOCKmd1EnzOlwt9cKTSlzMeYYvrgMfESR6oypRxL_CL-4Irj72UiN96wq-CGTJvfXrPD7vGwfa72r08v2_t9dTZgKx9QIYJALXvyIgTvfad1L7QP5Jsea6EkeNlZJ6QFGZoOpGy0MMrJpkO1Znc_t-fptFjm0o4x9zQMLtFpzu1CA6Jt0C7o7T_0eJqntMi1IOoarEZQ6huEf1Bc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1055174813</pqid></control><display><type>article</type><title>Frequent Patterns mining in time-sensitive Data Stream</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gouider, Mohamed Salah ; Zarrouk, Manel</creator><creatorcontrib>Gouider, Mohamed Salah ; Zarrouk, Manel</creatorcontrib><description>Mining frequent itemsets through static Databases has been extensively studied and used and is always considered a highly challenging task. For this reason it is interesting to extend it to data streams field. In the streaming case, the frequent patterns' mining has much more information to track and much greater complexity to manage. Infrequent items can become frequent later on and hence cannot be ignored. The output structure needs to be dynamically incremented to reflect the evolution of itemset frequencies over time. In this paper, we study this problem and specifically the methodology of mining time-sensitive data streams. We tried to improve an existing algorithm by increasing the temporal accuracy and discarding the out-of-date data by adding a new concept called the "Shaking Point". We presented as well some experiments illustrating the time and space required.</description><identifier>ISSN: 1694-0814</identifier><identifier>EISSN: 1694-0784</identifier><language>eng</language><publisher>Mahebourg: International Journal of Computer Science Issues (IJCSI)</publisher><subject>Algorithms ; Computer science ; Evolution ; Mining ; Shaking ; Streams ; Tasks ; Temporal logic</subject><ispartof>International journal of computer science issues, 2012-07, Vol.9 (4), p.117-117</ispartof><rights>Copyright International Journal of Computer Science Issues (IJCSI) Jul 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Gouider, Mohamed Salah</creatorcontrib><creatorcontrib>Zarrouk, Manel</creatorcontrib><title>Frequent Patterns mining in time-sensitive Data Stream</title><title>International journal of computer science issues</title><description>Mining frequent itemsets through static Databases has been extensively studied and used and is always considered a highly challenging task. For this reason it is interesting to extend it to data streams field. In the streaming case, the frequent patterns' mining has much more information to track and much greater complexity to manage. Infrequent items can become frequent later on and hence cannot be ignored. The output structure needs to be dynamically incremented to reflect the evolution of itemset frequencies over time. In this paper, we study this problem and specifically the methodology of mining time-sensitive data streams. We tried to improve an existing algorithm by increasing the temporal accuracy and discarding the out-of-date data by adding a new concept called the "Shaking Point". We presented as well some experiments illustrating the time and space required.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Evolution</subject><subject>Mining</subject><subject>Shaking</subject><subject>Streams</subject><subject>Tasks</subject><subject>Temporal logic</subject><issn>1694-0814</issn><issn>1694-0784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjsFKxDAURYMoOIzzDwE3bgp5SZq8LmV0VBhQcPYlbV4kQ5sZm9Tvt6BuvJt7F4fLuWArMI2uhEV9-bcR9DXb5HwUS3RtwOCKmd1EnzOlwt9cKTSlzMeYYvrgMfESR6oypRxL_CL-4Irj72UiN96wq-CGTJvfXrPD7vGwfa72r08v2_t9dTZgKx9QIYJALXvyIgTvfad1L7QP5Jsea6EkeNlZJ6QFGZoOpGy0MMrJpkO1Znc_t-fptFjm0o4x9zQMLtFpzu1CA6Jt0C7o7T_0eJqntMi1IOoarEZQ6huEf1Bc</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gouider, Mohamed Salah</creator><creator>Zarrouk, Manel</creator><general>International Journal of Computer Science Issues (IJCSI)</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20120701</creationdate><title>Frequent Patterns mining in time-sensitive Data Stream</title><author>Gouider, Mohamed Salah ; Zarrouk, Manel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p617-df838810842ced0ffdddb44c04dfed9c850321d2b7a02712f9b12294063a29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Evolution</topic><topic>Mining</topic><topic>Shaking</topic><topic>Streams</topic><topic>Tasks</topic><topic>Temporal logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Gouider, Mohamed Salah</creatorcontrib><creatorcontrib>Zarrouk, Manel</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer science issues</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouider, Mohamed Salah</au><au>Zarrouk, Manel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequent Patterns mining in time-sensitive Data Stream</atitle><jtitle>International journal of computer science issues</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>9</volume><issue>4</issue><spage>117</spage><epage>117</epage><pages>117-117</pages><issn>1694-0814</issn><eissn>1694-0784</eissn><abstract>Mining frequent itemsets through static Databases has been extensively studied and used and is always considered a highly challenging task. For this reason it is interesting to extend it to data streams field. In the streaming case, the frequent patterns' mining has much more information to track and much greater complexity to manage. Infrequent items can become frequent later on and hence cannot be ignored. The output structure needs to be dynamically incremented to reflect the evolution of itemset frequencies over time. In this paper, we study this problem and specifically the methodology of mining time-sensitive data streams. We tried to improve an existing algorithm by increasing the temporal accuracy and discarding the out-of-date data by adding a new concept called the "Shaking Point". We presented as well some experiments illustrating the time and space required.</abstract><cop>Mahebourg</cop><pub>International Journal of Computer Science Issues (IJCSI)</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1694-0814
ispartof International journal of computer science issues, 2012-07, Vol.9 (4), p.117-117
issn 1694-0814
1694-0784
language eng
recordid cdi_proquest_miscellaneous_1221887987
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Computer science
Evolution
Mining
Shaking
Streams
Tasks
Temporal logic
title Frequent Patterns mining in time-sensitive Data Stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequent%20Patterns%20mining%20in%20time-sensitive%20Data%20Stream&rft.jtitle=International%20journal%20of%20computer%20science%20issues&rft.au=Gouider,%20Mohamed%20Salah&rft.date=2012-07-01&rft.volume=9&rft.issue=4&rft.spage=117&rft.epage=117&rft.pages=117-117&rft.issn=1694-0814&rft.eissn=1694-0784&rft_id=info:doi/&rft_dat=%3Cproquest%3E1221887987%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1055174813&rft_id=info:pmid/&rfr_iscdi=true