Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials

Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2012-04, Vol.62 (1), p.52-56
Hauptverfasser: Ma, Rui, Weng, Luqian, Fang, Lin, Luo, Zhongkuan, Song, Shenhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 52
container_title Journal of sol-gel science and technology
container_volume 62
creator Ma, Rui
Weng, Luqian
Fang, Lin
Luo, Zhongkuan
Song, Shenhua
description Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy and the mechanical performance was investigated by a tensile strength test. The tensile strength of HA/PEEK composites reaches an optimal 108 MPa at 6.1% HA content. The composites with HA content below 17.4% exhibit a plastic break mode, while a brittle break mode above 17.4%. The results exhibit that the strong bonding between hydroxyapatite fillers and PEEK matrix has been achieved. And it was proved that this strong bonding may be mainly attributed to the physical factors, such as mechanical interlock between PEEK molecules and HA surface. The study clearly demonstrates that in situ synthesized HA/PEEK composite materials have the potential for use as an alternative material for hard tissue replacement.
doi_str_mv 10.1007/s10971-012-2682-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221885723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259535705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9d22426029940b765b3740fd263243da9ca1ce01e6a574528d678912346dd8083</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhgdR8Nr2B3QXEMHNtCdn8jVLKVYLBRfW9ZBmzninziRjkkHHX2-utygI4iZncZ73JclTVeccLjiAvkwcWs1r4FijMljzJ9WOS93Uwgj1tNpBi6YGDfp59SKlBwCQgutd9e1jjqvLayRmfc9mcnvrR2cntlAcQpytd8TCwEbP0phXljaf95TGH9Sz_dbH8H2zi81jpsslTBuVZfx1fKEcPDFvfXBhXkJJE5ttpjjaKZ1Wz4Yy6OxxnlSfrt_eXb2vbz-8u7l6c1s7wTHXbY8oUAG2rYB7reR9owUMPaoGRdPb1lnuCDgpK7WQaHqlTcuxEarvDZjmpHp97F1i-LpSyt08JkfTZD2FNXUckRsjNTb_R8EUWCghCvryL_QhrNGXh3SIspWN1CALxY-UiyGlSEO3xHG2cStV3cFad7TWFWvdwVrHS-bVY7NNxcIQy_-P6XcQpQIBcODwyKWy8p8p_rnBv8t_Ano5p_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259535705</pqid></control><display><type>article</type><title>Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Rui ; Weng, Luqian ; Fang, Lin ; Luo, Zhongkuan ; Song, Shenhua</creator><creatorcontrib>Ma, Rui ; Weng, Luqian ; Fang, Lin ; Luo, Zhongkuan ; Song, Shenhua</creatorcontrib><description>Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy and the mechanical performance was investigated by a tensile strength test. The tensile strength of HA/PEEK composites reaches an optimal 108 MPa at 6.1% HA content. The composites with HA content below 17.4% exhibit a plastic break mode, while a brittle break mode above 17.4%. The results exhibit that the strong bonding between hydroxyapatite fillers and PEEK matrix has been achieved. And it was proved that this strong bonding may be mainly attributed to the physical factors, such as mechanical interlock between PEEK molecules and HA surface. The study clearly demonstrates that in situ synthesized HA/PEEK composite materials have the potential for use as an alternative material for hard tissue replacement.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-012-2682-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Bonding strength ; Breaking ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composite materials ; Composites ; Energy dispersive X ray spectroscopy ; Energy transmission ; Exact sciences and technology ; Fillers ; General and physical chemistry ; Glass ; Hydroxyapatite ; Inorganic Chemistry ; Materials Science ; Mechanical properties ; Microscopy ; Nanocomposites ; Nanostructure ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Particulate composites ; Physical factors ; Polyether ether ketones ; Polyetheretherketones ; Polymer matrix composites ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Tensile strength ; Transmission electron microscopy</subject><ispartof>Journal of sol-gel science and technology, 2012-04, Vol.62 (1), p.52-56</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2015 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9d22426029940b765b3740fd263243da9ca1ce01e6a574528d678912346dd8083</citedby><cites>FETCH-LOGICAL-c412t-9d22426029940b765b3740fd263243da9ca1ce01e6a574528d678912346dd8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-012-2682-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-012-2682-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25604001$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Weng, Luqian</creatorcontrib><creatorcontrib>Fang, Lin</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><creatorcontrib>Song, Shenhua</creatorcontrib><title>Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy and the mechanical performance was investigated by a tensile strength test. The tensile strength of HA/PEEK composites reaches an optimal 108 MPa at 6.1% HA content. The composites with HA content below 17.4% exhibit a plastic break mode, while a brittle break mode above 17.4%. The results exhibit that the strong bonding between hydroxyapatite fillers and PEEK matrix has been achieved. And it was proved that this strong bonding may be mainly attributed to the physical factors, such as mechanical interlock between PEEK molecules and HA surface. The study clearly demonstrates that in situ synthesized HA/PEEK composite materials have the potential for use as an alternative material for hard tissue replacement.</description><subject>Bonding strength</subject><subject>Breaking</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Energy transmission</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Particulate composites</subject><subject>Physical factors</subject><subject>Polyether ether ketones</subject><subject>Polyetheretherketones</subject><subject>Polymer matrix composites</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Tensile strength</subject><subject>Transmission electron microscopy</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkU1rFTEUhgdR8Nr2B3QXEMHNtCdn8jVLKVYLBRfW9ZBmzninziRjkkHHX2-utygI4iZncZ73JclTVeccLjiAvkwcWs1r4FijMljzJ9WOS93Uwgj1tNpBi6YGDfp59SKlBwCQgutd9e1jjqvLayRmfc9mcnvrR2cntlAcQpytd8TCwEbP0phXljaf95TGH9Sz_dbH8H2zi81jpsslTBuVZfx1fKEcPDFvfXBhXkJJE5ttpjjaKZ1Wz4Yy6OxxnlSfrt_eXb2vbz-8u7l6c1s7wTHXbY8oUAG2rYB7reR9owUMPaoGRdPb1lnuCDgpK7WQaHqlTcuxEarvDZjmpHp97F1i-LpSyt08JkfTZD2FNXUckRsjNTb_R8EUWCghCvryL_QhrNGXh3SIspWN1CALxY-UiyGlSEO3xHG2cStV3cFad7TWFWvdwVrHS-bVY7NNxcIQy_-P6XcQpQIBcODwyKWy8p8p_rnBv8t_Ano5p_o</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Ma, Rui</creator><creator>Weng, Luqian</creator><creator>Fang, Lin</creator><creator>Luo, Zhongkuan</creator><creator>Song, Shenhua</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120401</creationdate><title>Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials</title><author>Ma, Rui ; Weng, Luqian ; Fang, Lin ; Luo, Zhongkuan ; Song, Shenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9d22426029940b765b3740fd263243da9ca1ce01e6a574528d678912346dd8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bonding strength</topic><topic>Breaking</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Energy transmission</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Particulate composites</topic><topic>Physical factors</topic><topic>Polyether ether ketones</topic><topic>Polyetheretherketones</topic><topic>Polymer matrix composites</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Tensile strength</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Weng, Luqian</creatorcontrib><creatorcontrib>Fang, Lin</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><creatorcontrib>Song, Shenhua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Rui</au><au>Weng, Luqian</au><au>Fang, Lin</au><au>Luo, Zhongkuan</au><au>Song, Shenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>62</volume><issue>1</issue><spage>52</spage><epage>56</epage><pages>52-56</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Nano-hydroxyapatite (HA) particles were prepared by a sol–gel method and polyetheretherketone (PEEK) composite materials containing a various amount of lab-prepared HA fillers had been successfully synthesized via an in situ synthesis process. The materials structure was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy and the mechanical performance was investigated by a tensile strength test. The tensile strength of HA/PEEK composites reaches an optimal 108 MPa at 6.1% HA content. The composites with HA content below 17.4% exhibit a plastic break mode, while a brittle break mode above 17.4%. The results exhibit that the strong bonding between hydroxyapatite fillers and PEEK matrix has been achieved. And it was proved that this strong bonding may be mainly attributed to the physical factors, such as mechanical interlock between PEEK molecules and HA surface. The study clearly demonstrates that in situ synthesized HA/PEEK composite materials have the potential for use as an alternative material for hard tissue replacement.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-012-2682-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2012-04, Vol.62 (1), p.52-56
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_miscellaneous_1221885723
source SpringerLink Journals - AutoHoldings
subjects Bonding strength
Breaking
Ceramics
Chemistry
Chemistry and Materials Science
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Composite materials
Composites
Energy dispersive X ray spectroscopy
Energy transmission
Exact sciences and technology
Fillers
General and physical chemistry
Glass
Hydroxyapatite
Inorganic Chemistry
Materials Science
Mechanical properties
Microscopy
Nanocomposites
Nanostructure
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper
Particulate composites
Physical factors
Polyether ether ketones
Polyetheretherketones
Polymer matrix composites
Scanning electron microscopy
Sol-gel processes
Spectrum analysis
Tensile strength
Transmission electron microscopy
title Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20mechanical%20performance%20of%20in%20situ%20synthesized%20hydroxyapatite/polyetheretherketone%20nanocomposite%20materials&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Ma,%20Rui&rft.date=2012-04-01&rft.volume=62&rft.issue=1&rft.spage=52&rft.epage=56&rft.pages=52-56&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-012-2682-1&rft_dat=%3Cproquest_cross%3E2259535705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259535705&rft_id=info:pmid/&rfr_iscdi=true