Local Hardy spaces of Musielak-Orlicz type and their applications
Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2012-08, Vol.55 (8), p.1677-1720 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1720 |
---|---|
container_issue | 8 |
container_start_page | 1677 |
container_title | Science China. Mathematics |
container_volume | 55 |
creator | Yang, DaChun Yang, SiBei |
description | Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn). |
doi_str_mv | 10.1007/s11425-012-4377-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221884165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42813610</cqvip_id><sourcerecordid>1221884165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIVKU_gM1sLAZ_JU7GqgKKVNQFZutqO21KGqd2MrS_HqNUjLzh7nR6757uIXTP6BOjVD1HxiTPCGWcSKEUOV-hCSvykqTCr9OcK0kUL8QtmsW4pwmipFKJCZqvvIEGLyHYE44dGBexr_DHEGvXwDdZh6Y2Z9yfOoehtbjfuTpg6Lq0hr72bbxDNxU00c0ufYq-Xl8-F0uyWr-9L-YrYoRUPQEOtJASnOVuA8bY0kFpZUJZWapAFiVnglrrMpNVYDbUOpVnzPGqNBthxBQ9jne74I-Di70-1NG4poHW-SFqxjkrCsnyLFHZSDXBxxhcpbtQHyCcNKP6NzE9JqZTYvo3MX1OGj5qYuK2Wxf03g-hTR_9K3q4GO18uz0m3Z-T5AUTOaPiBxMIenA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221884165</pqid></control><display><type>article</type><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, DaChun ; Yang, SiBei</creator><creatorcontrib>Yang, DaChun ; Yang, SiBei</creatorcontrib><description>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4377-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; China ; Decomposition ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multipliers ; Norms ; Operators ; Orlicz函数 ; Riesz平均 ; Transforms ; 伪微分算子 ; 原子分解 ; 局部Hardy空间 ; 应用 ; 次线性算子 ; 类型</subject><ispartof>Science China. Mathematics, 2012-08, Vol.55 (8), p.1677-1720</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</citedby><cites>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4377-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4377-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids></links><search><creatorcontrib>Yang, DaChun</creatorcontrib><creatorcontrib>Yang, SiBei</creatorcontrib><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</description><subject>Applications of Mathematics</subject><subject>China</subject><subject>Decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Norms</subject><subject>Operators</subject><subject>Orlicz函数</subject><subject>Riesz平均</subject><subject>Transforms</subject><subject>伪微分算子</subject><subject>原子分解</subject><subject>局部Hardy空间</subject><subject>应用</subject><subject>次线性算子</subject><subject>类型</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIVKU_gM1sLAZ_JU7GqgKKVNQFZutqO21KGqd2MrS_HqNUjLzh7nR6757uIXTP6BOjVD1HxiTPCGWcSKEUOV-hCSvykqTCr9OcK0kUL8QtmsW4pwmipFKJCZqvvIEGLyHYE44dGBexr_DHEGvXwDdZh6Y2Z9yfOoehtbjfuTpg6Lq0hr72bbxDNxU00c0ufYq-Xl8-F0uyWr-9L-YrYoRUPQEOtJASnOVuA8bY0kFpZUJZWapAFiVnglrrMpNVYDbUOpVnzPGqNBthxBQ9jne74I-Di70-1NG4poHW-SFqxjkrCsnyLFHZSDXBxxhcpbtQHyCcNKP6NzE9JqZTYvo3MX1OGj5qYuK2Wxf03g-hTR_9K3q4GO18uz0m3Z-T5AUTOaPiBxMIenA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Yang, DaChun</creator><creator>Yang, SiBei</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120801</creationdate><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><author>Yang, DaChun ; Yang, SiBei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>China</topic><topic>Decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Norms</topic><topic>Operators</topic><topic>Orlicz函数</topic><topic>Riesz平均</topic><topic>Transforms</topic><topic>伪微分算子</topic><topic>原子分解</topic><topic>局部Hardy空间</topic><topic>应用</topic><topic>次线性算子</topic><topic>类型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, DaChun</creatorcontrib><creatorcontrib>Yang, SiBei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, DaChun</au><au>Yang, SiBei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Hardy spaces of Musielak-Orlicz type and their applications</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>55</volume><issue>8</issue><spage>1677</spage><epage>1720</epage><pages>1677-1720</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4377-z</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2012-08, Vol.55 (8), p.1677-1720 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221884165 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics China Decomposition Mathematical analysis Mathematics Mathematics and Statistics Multipliers Norms Operators Orlicz函数 Riesz平均 Transforms 伪微分算子 原子分解 局部Hardy空间 应用 次线性算子 类型 |
title | Local Hardy spaces of Musielak-Orlicz type and their applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Hardy%20spaces%20of%20Musielak-Orlicz%20type%20and%20their%20applications&rft.jtitle=Science%20China.%20Mathematics&rft.au=Yang,%20DaChun&rft.date=2012-08-01&rft.volume=55&rft.issue=8&rft.spage=1677&rft.epage=1720&rft.pages=1677-1720&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4377-z&rft_dat=%3Cproquest_cross%3E1221884165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221884165&rft_id=info:pmid/&rft_cqvip_id=42813610&rfr_iscdi=true |