Local Hardy spaces of Musielak-Orlicz type and their applications

Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2012-08, Vol.55 (8), p.1677-1720
Hauptverfasser: Yang, DaChun, Yang, SiBei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1720
container_issue 8
container_start_page 1677
container_title Science China. Mathematics
container_volume 55
creator Yang, DaChun
Yang, SiBei
description Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).
doi_str_mv 10.1007/s11425-012-4377-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221884165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>42813610</cqvip_id><sourcerecordid>1221884165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIVKU_gM1sLAZ_JU7GqgKKVNQFZutqO21KGqd2MrS_HqNUjLzh7nR6757uIXTP6BOjVD1HxiTPCGWcSKEUOV-hCSvykqTCr9OcK0kUL8QtmsW4pwmipFKJCZqvvIEGLyHYE44dGBexr_DHEGvXwDdZh6Y2Z9yfOoehtbjfuTpg6Lq0hr72bbxDNxU00c0ufYq-Xl8-F0uyWr-9L-YrYoRUPQEOtJASnOVuA8bY0kFpZUJZWapAFiVnglrrMpNVYDbUOpVnzPGqNBthxBQ9jne74I-Di70-1NG4poHW-SFqxjkrCsnyLFHZSDXBxxhcpbtQHyCcNKP6NzE9JqZTYvo3MX1OGj5qYuK2Wxf03g-hTR_9K3q4GO18uz0m3Z-T5AUTOaPiBxMIenA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221884165</pqid></control><display><type>article</type><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, DaChun ; Yang, SiBei</creator><creatorcontrib>Yang, DaChun ; Yang, SiBei</creatorcontrib><description>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4377-z</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; China ; Decomposition ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multipliers ; Norms ; Operators ; Orlicz函数 ; Riesz平均 ; Transforms ; 伪微分算子 ; 原子分解 ; 局部Hardy空间 ; 应用 ; 次线性算子 ; 类型</subject><ispartof>Science China. Mathematics, 2012-08, Vol.55 (8), p.1677-1720</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</citedby><cites>FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4377-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4377-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids></links><search><creatorcontrib>Yang, DaChun</creatorcontrib><creatorcontrib>Yang, SiBei</creatorcontrib><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</description><subject>Applications of Mathematics</subject><subject>China</subject><subject>Decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Norms</subject><subject>Operators</subject><subject>Orlicz函数</subject><subject>Riesz平均</subject><subject>Transforms</subject><subject>伪微分算子</subject><subject>原子分解</subject><subject>局部Hardy空间</subject><subject>应用</subject><subject>次线性算子</subject><subject>类型</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQtRBIVKU_gM1sLAZ_JU7GqgKKVNQFZutqO21KGqd2MrS_HqNUjLzh7nR6757uIXTP6BOjVD1HxiTPCGWcSKEUOV-hCSvykqTCr9OcK0kUL8QtmsW4pwmipFKJCZqvvIEGLyHYE44dGBexr_DHEGvXwDdZh6Y2Z9yfOoehtbjfuTpg6Lq0hr72bbxDNxU00c0ufYq-Xl8-F0uyWr-9L-YrYoRUPQEOtJASnOVuA8bY0kFpZUJZWapAFiVnglrrMpNVYDbUOpVnzPGqNBthxBQ9jne74I-Di70-1NG4poHW-SFqxjkrCsnyLFHZSDXBxxhcpbtQHyCcNKP6NzE9JqZTYvo3MX1OGj5qYuK2Wxf03g-hTR_9K3q4GO18uz0m3Z-T5AUTOaPiBxMIenA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Yang, DaChun</creator><creator>Yang, SiBei</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120801</creationdate><title>Local Hardy spaces of Musielak-Orlicz type and their applications</title><author>Yang, DaChun ; Yang, SiBei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a2a0844aed2ebaccd9ea9d44449fd07a4892130dde5c5facb0de7651e2f9cb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications of Mathematics</topic><topic>China</topic><topic>Decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Norms</topic><topic>Operators</topic><topic>Orlicz函数</topic><topic>Riesz平均</topic><topic>Transforms</topic><topic>伪微分算子</topic><topic>原子分解</topic><topic>局部Hardy空间</topic><topic>应用</topic><topic>次线性算子</topic><topic>类型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, DaChun</creatorcontrib><creatorcontrib>Yang, SiBei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, DaChun</au><au>Yang, SiBei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Hardy spaces of Musielak-Orlicz type and their applications</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>55</volume><issue>8</issue><spage>1677</spage><epage>1720</epage><pages>1677-1720</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4377-z</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2012-08, Vol.55 (8), p.1677-1720
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1221884165
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
China
Decomposition
Mathematical analysis
Mathematics
Mathematics and Statistics
Multipliers
Norms
Operators
Orlicz函数
Riesz平均
Transforms
伪微分算子
原子分解
局部Hardy空间
应用
次线性算子
类型
title Local Hardy spaces of Musielak-Orlicz type and their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Hardy%20spaces%20of%20Musielak-Orlicz%20type%20and%20their%20applications&rft.jtitle=Science%20China.%20Mathematics&rft.au=Yang,%20DaChun&rft.date=2012-08-01&rft.volume=55&rft.issue=8&rft.spage=1677&rft.epage=1720&rft.pages=1677-1720&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4377-z&rft_dat=%3Cproquest_cross%3E1221884165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221884165&rft_id=info:pmid/&rft_cqvip_id=42813610&rfr_iscdi=true