P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils

In order to determine the P‐V‐T equation of state of ε‐iron, in situ X‐ray observations were carried out at pressures up to 80 GPa and temperatures up to 1900 K using the Kawai‐type high pressure apparatus equipped with sintered diamond anvils which was interfaced with synchrotron radiation. The pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2012-10, Vol.39 (20), p.n/a
Hauptverfasser: Yamazaki, Daisuke, Ito, Eiji, Yoshino, Takashi, Yoneda, Akira, Guo, Xinzhuan, Zhang, Baohua, Sun, Wei, Shimojuku, Akira, Tsujino, Noriyoshi, Kunimoto, Takehiro, Higo, Yuji, Funakoshi, Ken-ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Geophysical research letters
container_volume 39
creator Yamazaki, Daisuke
Ito, Eiji
Yoshino, Takashi
Yoneda, Akira
Guo, Xinzhuan
Zhang, Baohua
Sun, Wei
Shimojuku, Akira
Tsujino, Noriyoshi
Kunimoto, Takehiro
Higo, Yuji
Funakoshi, Ken-ichi
description In order to determine the P‐V‐T equation of state of ε‐iron, in situ X‐ray observations were carried out at pressures up to 80 GPa and temperatures up to 1900 K using the Kawai‐type high pressure apparatus equipped with sintered diamond anvils which was interfaced with synchrotron radiation. The present results indicate the unit cell volume at ambient conditionsV0 = 22.15(5) Å3, the isothermal bulk modulus KT0 = 202(7) GPa and its pressure derivative K′T0 = 4.5(2), the Debye temperature θ0 = 1173(62) K, Grüneisen parameter at ambient pressure γ0 = 3.2(2), and its logarithmic volume dependence q = 0.8(3). Furthermore, thermal expansion coefficient at ambient pressure was determined to be α0(K−1) = 3.7(2) × 10−5 + 7.2(6) × 10−8(T‐300) and Anderson‐Grüneisen parameterδT = 6.2(3). Using these parameters, we have estimated the density of ε‐iron at the inner core conditions to be ∼3% denser than the value inferred from seismological observation. This result indicates that certain amount of light elements should be contained in the inner core as well as in the outer core but in definitely smaller amount. Key Points Precise determination of volume at high temperature under pressure Newly developed pressure generation technique enable us to do this research Density deficit of inner core of ~3% is largely smaller than that of outer core
doi_str_mv 10.1029/2012GL053540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221883368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221883368</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4835-d4bfe7ff7001e9e5f5c3a22ffa1ce82d38c6f2aa8e0d0a55e66255484f97b8d43</originalsourceid><addsrcrecordid>eNp9kM9u1DAQhyMEEkvhxgP4gsSBlLEdO84RVRCqXZVVW-BoTZNx15BNUtth2ZfgbXgNnomstqo4cZo_-r7fSJNlLzmcchDVWwFc1CtQUhXwKFvwqihyA1A-zhYA1dyLUj_NnsX4DQAkSL7Ifq3zL_k1o7sJkx96NjgWEyZibgjsz-_ch3k5jSwNzACr18iwbxmvANiSTdH3tyxtiC1xhz5P-5HYxt9u2BgoxikQw3HEgGmKhxN-HKllO582bDYThXlqPW6HORL7H76Lz7MnDrtIL-7rSfb5w_vrs4_56lN9fvZulWNhpMrb4sZR6VwJwKki5VQjUQjnkDdkRCtNo51ANAQtoFKktVCqMIWryhvTFvIke33MHcNwN1FMdutjQ12HPQ1TtFwIboyU2szomyPahCHGQM6OwW8x7C0He3i7_fftM_7qPhljg50L2Dc-PjhCa6l0pWZOHLmd72j_30xbX65EpfVByo-Sj4l-PkgYvltdylLZrxe1vby6WMp6eWXX8i9-taBD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221883368</pqid></control><display><type>article</type><title>P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Yamazaki, Daisuke ; Ito, Eiji ; Yoshino, Takashi ; Yoneda, Akira ; Guo, Xinzhuan ; Zhang, Baohua ; Sun, Wei ; Shimojuku, Akira ; Tsujino, Noriyoshi ; Kunimoto, Takehiro ; Higo, Yuji ; Funakoshi, Ken-ichi</creator><creatorcontrib>Yamazaki, Daisuke ; Ito, Eiji ; Yoshino, Takashi ; Yoneda, Akira ; Guo, Xinzhuan ; Zhang, Baohua ; Sun, Wei ; Shimojuku, Akira ; Tsujino, Noriyoshi ; Kunimoto, Takehiro ; Higo, Yuji ; Funakoshi, Ken-ichi</creatorcontrib><description>In order to determine the P‐V‐T equation of state of ε‐iron, in situ X‐ray observations were carried out at pressures up to 80 GPa and temperatures up to 1900 K using the Kawai‐type high pressure apparatus equipped with sintered diamond anvils which was interfaced with synchrotron radiation. The present results indicate the unit cell volume at ambient conditionsV0 = 22.15(5) Å3, the isothermal bulk modulus KT0 = 202(7) GPa and its pressure derivative K′T0 = 4.5(2), the Debye temperature θ0 = 1173(62) K, Grüneisen parameter at ambient pressure γ0 = 3.2(2), and its logarithmic volume dependence q = 0.8(3). Furthermore, thermal expansion coefficient at ambient pressure was determined to be α0(K−1) = 3.7(2) × 10−5 + 7.2(6) × 10−8(T‐300) and Anderson‐Grüneisen parameterδT = 6.2(3). Using these parameters, we have estimated the density of ε‐iron at the inner core conditions to be ∼3% denser than the value inferred from seismological observation. This result indicates that certain amount of light elements should be contained in the inner core as well as in the outer core but in definitely smaller amount. Key Points Precise determination of volume at high temperature under pressure Newly developed pressure generation technique enable us to do this research Density deficit of inner core of ~3% is largely smaller than that of outer core</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2012GL053540</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Anvils ; Debye temperature ; Density ; Derivatives ; Earth sciences ; Earth, ocean, space ; Equations of state ; Exact sciences and technology ; high pressure ; P-V-T EOS ; Pressure ; Sintering ; Thermal expansion ; ε-iron</subject><ispartof>Geophysical research letters, 2012-10, Vol.39 (20), p.n/a</ispartof><rights>2012. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4835-d4bfe7ff7001e9e5f5c3a22ffa1ce82d38c6f2aa8e0d0a55e66255484f97b8d43</citedby><cites>FETCH-LOGICAL-a4835-d4bfe7ff7001e9e5f5c3a22ffa1ce82d38c6f2aa8e0d0a55e66255484f97b8d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2012GL053540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2012GL053540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11516,27926,27927,45576,45577,46411,46470,46835,46894</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26635695$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamazaki, Daisuke</creatorcontrib><creatorcontrib>Ito, Eiji</creatorcontrib><creatorcontrib>Yoshino, Takashi</creatorcontrib><creatorcontrib>Yoneda, Akira</creatorcontrib><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Shimojuku, Akira</creatorcontrib><creatorcontrib>Tsujino, Noriyoshi</creatorcontrib><creatorcontrib>Kunimoto, Takehiro</creatorcontrib><creatorcontrib>Higo, Yuji</creatorcontrib><creatorcontrib>Funakoshi, Ken-ichi</creatorcontrib><title>P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>In order to determine the P‐V‐T equation of state of ε‐iron, in situ X‐ray observations were carried out at pressures up to 80 GPa and temperatures up to 1900 K using the Kawai‐type high pressure apparatus equipped with sintered diamond anvils which was interfaced with synchrotron radiation. The present results indicate the unit cell volume at ambient conditionsV0 = 22.15(5) Å3, the isothermal bulk modulus KT0 = 202(7) GPa and its pressure derivative K′T0 = 4.5(2), the Debye temperature θ0 = 1173(62) K, Grüneisen parameter at ambient pressure γ0 = 3.2(2), and its logarithmic volume dependence q = 0.8(3). Furthermore, thermal expansion coefficient at ambient pressure was determined to be α0(K−1) = 3.7(2) × 10−5 + 7.2(6) × 10−8(T‐300) and Anderson‐Grüneisen parameterδT = 6.2(3). Using these parameters, we have estimated the density of ε‐iron at the inner core conditions to be ∼3% denser than the value inferred from seismological observation. This result indicates that certain amount of light elements should be contained in the inner core as well as in the outer core but in definitely smaller amount. Key Points Precise determination of volume at high temperature under pressure Newly developed pressure generation technique enable us to do this research Density deficit of inner core of ~3% is largely smaller than that of outer core</description><subject>Anvils</subject><subject>Debye temperature</subject><subject>Density</subject><subject>Derivatives</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Equations of state</subject><subject>Exact sciences and technology</subject><subject>high pressure</subject><subject>P-V-T EOS</subject><subject>Pressure</subject><subject>Sintering</subject><subject>Thermal expansion</subject><subject>ε-iron</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u1DAQhyMEEkvhxgP4gsSBlLEdO84RVRCqXZVVW-BoTZNx15BNUtth2ZfgbXgNnomstqo4cZo_-r7fSJNlLzmcchDVWwFc1CtQUhXwKFvwqihyA1A-zhYA1dyLUj_NnsX4DQAkSL7Ifq3zL_k1o7sJkx96NjgWEyZibgjsz-_ch3k5jSwNzACr18iwbxmvANiSTdH3tyxtiC1xhz5P-5HYxt9u2BgoxikQw3HEgGmKhxN-HKllO582bDYThXlqPW6HORL7H76Lz7MnDrtIL-7rSfb5w_vrs4_56lN9fvZulWNhpMrb4sZR6VwJwKki5VQjUQjnkDdkRCtNo51ANAQtoFKktVCqMIWryhvTFvIke33MHcNwN1FMdutjQ12HPQ1TtFwIboyU2szomyPahCHGQM6OwW8x7C0He3i7_fftM_7qPhljg50L2Dc-PjhCa6l0pWZOHLmd72j_30xbX65EpfVByo-Sj4l-PkgYvltdylLZrxe1vby6WMp6eWXX8i9-taBD</recordid><startdate>20121028</startdate><enddate>20121028</enddate><creator>Yamazaki, Daisuke</creator><creator>Ito, Eiji</creator><creator>Yoshino, Takashi</creator><creator>Yoneda, Akira</creator><creator>Guo, Xinzhuan</creator><creator>Zhang, Baohua</creator><creator>Sun, Wei</creator><creator>Shimojuku, Akira</creator><creator>Tsujino, Noriyoshi</creator><creator>Kunimoto, Takehiro</creator><creator>Higo, Yuji</creator><creator>Funakoshi, Ken-ichi</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20121028</creationdate><title>P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils</title><author>Yamazaki, Daisuke ; Ito, Eiji ; Yoshino, Takashi ; Yoneda, Akira ; Guo, Xinzhuan ; Zhang, Baohua ; Sun, Wei ; Shimojuku, Akira ; Tsujino, Noriyoshi ; Kunimoto, Takehiro ; Higo, Yuji ; Funakoshi, Ken-ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4835-d4bfe7ff7001e9e5f5c3a22ffa1ce82d38c6f2aa8e0d0a55e66255484f97b8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anvils</topic><topic>Debye temperature</topic><topic>Density</topic><topic>Derivatives</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Equations of state</topic><topic>Exact sciences and technology</topic><topic>high pressure</topic><topic>P-V-T EOS</topic><topic>Pressure</topic><topic>Sintering</topic><topic>Thermal expansion</topic><topic>ε-iron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Daisuke</creatorcontrib><creatorcontrib>Ito, Eiji</creatorcontrib><creatorcontrib>Yoshino, Takashi</creatorcontrib><creatorcontrib>Yoneda, Akira</creatorcontrib><creatorcontrib>Guo, Xinzhuan</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Shimojuku, Akira</creatorcontrib><creatorcontrib>Tsujino, Noriyoshi</creatorcontrib><creatorcontrib>Kunimoto, Takehiro</creatorcontrib><creatorcontrib>Higo, Yuji</creatorcontrib><creatorcontrib>Funakoshi, Ken-ichi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Daisuke</au><au>Ito, Eiji</au><au>Yoshino, Takashi</au><au>Yoneda, Akira</au><au>Guo, Xinzhuan</au><au>Zhang, Baohua</au><au>Sun, Wei</au><au>Shimojuku, Akira</au><au>Tsujino, Noriyoshi</au><au>Kunimoto, Takehiro</au><au>Higo, Yuji</au><au>Funakoshi, Ken-ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2012-10-28</date><risdate>2012</risdate><volume>39</volume><issue>20</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>In order to determine the P‐V‐T equation of state of ε‐iron, in situ X‐ray observations were carried out at pressures up to 80 GPa and temperatures up to 1900 K using the Kawai‐type high pressure apparatus equipped with sintered diamond anvils which was interfaced with synchrotron radiation. The present results indicate the unit cell volume at ambient conditionsV0 = 22.15(5) Å3, the isothermal bulk modulus KT0 = 202(7) GPa and its pressure derivative K′T0 = 4.5(2), the Debye temperature θ0 = 1173(62) K, Grüneisen parameter at ambient pressure γ0 = 3.2(2), and its logarithmic volume dependence q = 0.8(3). Furthermore, thermal expansion coefficient at ambient pressure was determined to be α0(K−1) = 3.7(2) × 10−5 + 7.2(6) × 10−8(T‐300) and Anderson‐Grüneisen parameterδT = 6.2(3). Using these parameters, we have estimated the density of ε‐iron at the inner core conditions to be ∼3% denser than the value inferred from seismological observation. This result indicates that certain amount of light elements should be contained in the inner core as well as in the outer core but in definitely smaller amount. Key Points Precise determination of volume at high temperature under pressure Newly developed pressure generation technique enable us to do this research Density deficit of inner core of ~3% is largely smaller than that of outer core</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2012GL053540</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2012-10, Vol.39 (20), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1221883368
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection)
subjects Anvils
Debye temperature
Density
Derivatives
Earth sciences
Earth, ocean, space
Equations of state
Exact sciences and technology
high pressure
P-V-T EOS
Pressure
Sintering
Thermal expansion
ε-iron
title P-V-T equation of state for ε-iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus equipped with sintered diamond anvils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-V-T%20equation%20of%20state%20for%20%CE%B5-iron%20up%20to%2080%20GPa%20and%201900%20K%20using%20the%20Kawai-type%20high%20pressure%20apparatus%20equipped%20with%20sintered%20diamond%20anvils&rft.jtitle=Geophysical%20research%20letters&rft.au=Yamazaki,%20Daisuke&rft.date=2012-10-28&rft.volume=39&rft.issue=20&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2012GL053540&rft_dat=%3Cproquest_cross%3E1221883368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221883368&rft_id=info:pmid/&rfr_iscdi=true