Thermodynamic modeling of mineralogical phases formed by continuous casting powders
A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial...
Gespeichert in:
Veröffentlicht in: | Thermochimica acta 2011-01, Vol.512 (1), p.129-133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 129 |
container_title | Thermochimica acta |
container_volume | 512 |
creator | Romo-Castañeda, Julio Cruz-Ramírez, Alejandro Romero-Serrano, Antonio Vargas-Ramírez, Marissa Hallen-López, Manuel |
description | A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca
4Si
2O
7F
2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF
2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process. |
doi_str_mv | 10.1016/j.tca.2010.09.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221883129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060311000359X</els_id><sourcerecordid>1221883129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSF0oD8CpuSD1kmXsJI4jThWigITEAZC4WcNkvHiVxFs7S7VvX68WcezJY-n7_xl9QpxJWEqQ-mK9nAmXCvIfuiXI-otYSNOqstXq5atYANRQaqjkN3Gc0hoApDKwEI9PbxzH0O8mHD0VeeLBT6siuGL0E0ccwsoTDsXmDROnwoU4cl-87goK0-ynbdimgjDN-9Am_O05pu_iyOGQ-PTjPRHPv6-frm7L-4ebu6tf9yVVpp5LVE6ZGh3Ljtko7jVJVzXsNHVN33bNa0dALKlu2YBrW02OmrZxWCM0jalOxM9D7yaGP1tOsx19Ih4GnDifZaVS0phKqi6j8oBSDClFdnYT_YhxZyXYvUC7tlmg3Qu00NksMGfOP-oxZQMu4kQ-fQZV1da60zpzPw6cw2BxFTPz_JiLmuy4qiXst18eCM423j1Hm8jzRNz7yDTbPvj_3PEPm1CQjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221883129</pqid></control><display><type>article</type><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</creator><creatorcontrib>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</creatorcontrib><description>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca
4Si
2O
7F
2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF
2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.09.014</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>carbon ; chemical composition ; Computer programs ; computer software ; Cross-disciplinary physics: materials science; rheology ; Cuspidine ; Exact sciences and technology ; Flux ; heat transfer ; Materials science ; melting ; melting point ; Mineralogical phases ; Molds ; Other topics in materials science ; Phase diagrams ; Phases ; physical phases ; Physics ; powders ; shrinkage ; Software ; Solidification ; steel ; Strands ; Thermodynamic ; Thermodynamics ; X-radiation ; X-ray diffraction</subject><ispartof>Thermochimica acta, 2011-01, Vol.512 (1), p.129-133</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</citedby><cites>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tca.2010.09.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23746966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo-Castañeda, Julio</creatorcontrib><creatorcontrib>Cruz-Ramírez, Alejandro</creatorcontrib><creatorcontrib>Romero-Serrano, Antonio</creatorcontrib><creatorcontrib>Vargas-Ramírez, Marissa</creatorcontrib><creatorcontrib>Hallen-López, Manuel</creatorcontrib><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><title>Thermochimica acta</title><description>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca
4Si
2O
7F
2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF
2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</description><subject>carbon</subject><subject>chemical composition</subject><subject>Computer programs</subject><subject>computer software</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cuspidine</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>heat transfer</subject><subject>Materials science</subject><subject>melting</subject><subject>melting point</subject><subject>Mineralogical phases</subject><subject>Molds</subject><subject>Other topics in materials science</subject><subject>Phase diagrams</subject><subject>Phases</subject><subject>physical phases</subject><subject>Physics</subject><subject>powders</subject><subject>shrinkage</subject><subject>Software</subject><subject>Solidification</subject><subject>steel</subject><subject>Strands</subject><subject>Thermodynamic</subject><subject>Thermodynamics</subject><subject>X-radiation</subject><subject>X-ray diffraction</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSF0oD8CpuSD1kmXsJI4jThWigITEAZC4WcNkvHiVxFs7S7VvX68WcezJY-n7_xl9QpxJWEqQ-mK9nAmXCvIfuiXI-otYSNOqstXq5atYANRQaqjkN3Gc0hoApDKwEI9PbxzH0O8mHD0VeeLBT6siuGL0E0ccwsoTDsXmDROnwoU4cl-87goK0-ynbdimgjDN-9Am_O05pu_iyOGQ-PTjPRHPv6-frm7L-4ebu6tf9yVVpp5LVE6ZGh3Ljtko7jVJVzXsNHVN33bNa0dALKlu2YBrW02OmrZxWCM0jalOxM9D7yaGP1tOsx19Ih4GnDifZaVS0phKqi6j8oBSDClFdnYT_YhxZyXYvUC7tlmg3Qu00NksMGfOP-oxZQMu4kQ-fQZV1da60zpzPw6cw2BxFTPz_JiLmuy4qiXst18eCM423j1Hm8jzRNz7yDTbPvj_3PEPm1CQjg</recordid><startdate>20110110</startdate><enddate>20110110</enddate><creator>Romo-Castañeda, Julio</creator><creator>Cruz-Ramírez, Alejandro</creator><creator>Romero-Serrano, Antonio</creator><creator>Vargas-Ramírez, Marissa</creator><creator>Hallen-López, Manuel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110110</creationdate><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><author>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>carbon</topic><topic>chemical composition</topic><topic>Computer programs</topic><topic>computer software</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cuspidine</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>heat transfer</topic><topic>Materials science</topic><topic>melting</topic><topic>melting point</topic><topic>Mineralogical phases</topic><topic>Molds</topic><topic>Other topics in materials science</topic><topic>Phase diagrams</topic><topic>Phases</topic><topic>physical phases</topic><topic>Physics</topic><topic>powders</topic><topic>shrinkage</topic><topic>Software</topic><topic>Solidification</topic><topic>steel</topic><topic>Strands</topic><topic>Thermodynamic</topic><topic>Thermodynamics</topic><topic>X-radiation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo-Castañeda, Julio</creatorcontrib><creatorcontrib>Cruz-Ramírez, Alejandro</creatorcontrib><creatorcontrib>Romero-Serrano, Antonio</creatorcontrib><creatorcontrib>Vargas-Ramírez, Marissa</creatorcontrib><creatorcontrib>Hallen-López, Manuel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo-Castañeda, Julio</au><au>Cruz-Ramírez, Alejandro</au><au>Romero-Serrano, Antonio</au><au>Vargas-Ramírez, Marissa</au><au>Hallen-López, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</atitle><jtitle>Thermochimica acta</jtitle><date>2011-01-10</date><risdate>2011</risdate><volume>512</volume><issue>1</issue><spage>129</spage><epage>133</epage><pages>129-133</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca
4Si
2O
7F
2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF
2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.09.014</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6031 |
ispartof | Thermochimica acta, 2011-01, Vol.512 (1), p.129-133 |
issn | 0040-6031 1872-762X |
language | eng |
recordid | cdi_proquest_miscellaneous_1221883129 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | carbon chemical composition Computer programs computer software Cross-disciplinary physics: materials science rheology Cuspidine Exact sciences and technology Flux heat transfer Materials science melting melting point Mineralogical phases Molds Other topics in materials science Phase diagrams Phases physical phases Physics powders shrinkage Software Solidification steel Strands Thermodynamic Thermodynamics X-radiation X-ray diffraction |
title | Thermodynamic modeling of mineralogical phases formed by continuous casting powders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20mineralogical%20phases%20formed%20by%20continuous%20casting%20powders&rft.jtitle=Thermochimica%20acta&rft.au=Romo-Casta%C3%B1eda,%20Julio&rft.date=2011-01-10&rft.volume=512&rft.issue=1&rft.spage=129&rft.epage=133&rft.pages=129-133&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.09.014&rft_dat=%3Cproquest_cross%3E1221883129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221883129&rft_id=info:pmid/&rft_els_id=S004060311000359X&rfr_iscdi=true |