Thermodynamic modeling of mineralogical phases formed by continuous casting powders

A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermochimica acta 2011-01, Vol.512 (1), p.129-133
Hauptverfasser: Romo-Castañeda, Julio, Cruz-Ramírez, Alejandro, Romero-Serrano, Antonio, Vargas-Ramírez, Marissa, Hallen-López, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 129
container_title Thermochimica acta
container_volume 512
creator Romo-Castañeda, Julio
Cruz-Ramírez, Alejandro
Romero-Serrano, Antonio
Vargas-Ramírez, Marissa
Hallen-López, Manuel
description A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4Si 2O 7F 2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.
doi_str_mv 10.1016/j.tca.2010.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221883129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060311000359X</els_id><sourcerecordid>1221883129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSF0oD8CpuSD1kmXsJI4jThWigITEAZC4WcNkvHiVxFs7S7VvX68WcezJY-n7_xl9QpxJWEqQ-mK9nAmXCvIfuiXI-otYSNOqstXq5atYANRQaqjkN3Gc0hoApDKwEI9PbxzH0O8mHD0VeeLBT6siuGL0E0ccwsoTDsXmDROnwoU4cl-87goK0-ynbdimgjDN-9Am_O05pu_iyOGQ-PTjPRHPv6-frm7L-4ebu6tf9yVVpp5LVE6ZGh3Ljtko7jVJVzXsNHVN33bNa0dALKlu2YBrW02OmrZxWCM0jalOxM9D7yaGP1tOsx19Ih4GnDifZaVS0phKqi6j8oBSDClFdnYT_YhxZyXYvUC7tlmg3Qu00NksMGfOP-oxZQMu4kQ-fQZV1da60zpzPw6cw2BxFTPz_JiLmuy4qiXst18eCM423j1Hm8jzRNz7yDTbPvj_3PEPm1CQjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221883129</pqid></control><display><type>article</type><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</creator><creatorcontrib>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</creatorcontrib><description>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4Si 2O 7F 2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.09.014</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>carbon ; chemical composition ; Computer programs ; computer software ; Cross-disciplinary physics: materials science; rheology ; Cuspidine ; Exact sciences and technology ; Flux ; heat transfer ; Materials science ; melting ; melting point ; Mineralogical phases ; Molds ; Other topics in materials science ; Phase diagrams ; Phases ; physical phases ; Physics ; powders ; shrinkage ; Software ; Solidification ; steel ; Strands ; Thermodynamic ; Thermodynamics ; X-radiation ; X-ray diffraction</subject><ispartof>Thermochimica acta, 2011-01, Vol.512 (1), p.129-133</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</citedby><cites>FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tca.2010.09.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23746966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo-Castañeda, Julio</creatorcontrib><creatorcontrib>Cruz-Ramírez, Alejandro</creatorcontrib><creatorcontrib>Romero-Serrano, Antonio</creatorcontrib><creatorcontrib>Vargas-Ramírez, Marissa</creatorcontrib><creatorcontrib>Hallen-López, Manuel</creatorcontrib><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><title>Thermochimica acta</title><description>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4Si 2O 7F 2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</description><subject>carbon</subject><subject>chemical composition</subject><subject>Computer programs</subject><subject>computer software</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cuspidine</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>heat transfer</subject><subject>Materials science</subject><subject>melting</subject><subject>melting point</subject><subject>Mineralogical phases</subject><subject>Molds</subject><subject>Other topics in materials science</subject><subject>Phase diagrams</subject><subject>Phases</subject><subject>physical phases</subject><subject>Physics</subject><subject>powders</subject><subject>shrinkage</subject><subject>Software</subject><subject>Solidification</subject><subject>steel</subject><subject>Strands</subject><subject>Thermodynamic</subject><subject>Thermodynamics</subject><subject>X-radiation</subject><subject>X-ray diffraction</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSF0oD8CpuSD1kmXsJI4jThWigITEAZC4WcNkvHiVxFs7S7VvX68WcezJY-n7_xl9QpxJWEqQ-mK9nAmXCvIfuiXI-otYSNOqstXq5atYANRQaqjkN3Gc0hoApDKwEI9PbxzH0O8mHD0VeeLBT6siuGL0E0ccwsoTDsXmDROnwoU4cl-87goK0-ynbdimgjDN-9Am_O05pu_iyOGQ-PTjPRHPv6-frm7L-4ebu6tf9yVVpp5LVE6ZGh3Ljtko7jVJVzXsNHVN33bNa0dALKlu2YBrW02OmrZxWCM0jalOxM9D7yaGP1tOsx19Ih4GnDifZaVS0phKqi6j8oBSDClFdnYT_YhxZyXYvUC7tlmg3Qu00NksMGfOP-oxZQMu4kQ-fQZV1da60zpzPw6cw2BxFTPz_JiLmuy4qiXst18eCM423j1Hm8jzRNz7yDTbPvj_3PEPm1CQjg</recordid><startdate>20110110</startdate><enddate>20110110</enddate><creator>Romo-Castañeda, Julio</creator><creator>Cruz-Ramírez, Alejandro</creator><creator>Romero-Serrano, Antonio</creator><creator>Vargas-Ramírez, Marissa</creator><creator>Hallen-López, Manuel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110110</creationdate><title>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</title><author>Romo-Castañeda, Julio ; Cruz-Ramírez, Alejandro ; Romero-Serrano, Antonio ; Vargas-Ramírez, Marissa ; Hallen-López, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-a2f284afe19ee82ed6c1f35ef6c95d795b9c0ce1c47e80f776cfc575fa4a05583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>carbon</topic><topic>chemical composition</topic><topic>Computer programs</topic><topic>computer software</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cuspidine</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>heat transfer</topic><topic>Materials science</topic><topic>melting</topic><topic>melting point</topic><topic>Mineralogical phases</topic><topic>Molds</topic><topic>Other topics in materials science</topic><topic>Phase diagrams</topic><topic>Phases</topic><topic>physical phases</topic><topic>Physics</topic><topic>powders</topic><topic>shrinkage</topic><topic>Software</topic><topic>Solidification</topic><topic>steel</topic><topic>Strands</topic><topic>Thermodynamic</topic><topic>Thermodynamics</topic><topic>X-radiation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo-Castañeda, Julio</creatorcontrib><creatorcontrib>Cruz-Ramírez, Alejandro</creatorcontrib><creatorcontrib>Romero-Serrano, Antonio</creatorcontrib><creatorcontrib>Vargas-Ramírez, Marissa</creatorcontrib><creatorcontrib>Hallen-López, Manuel</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo-Castañeda, Julio</au><au>Cruz-Ramírez, Alejandro</au><au>Romero-Serrano, Antonio</au><au>Vargas-Ramírez, Marissa</au><au>Hallen-López, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of mineralogical phases formed by continuous casting powders</atitle><jtitle>Thermochimica acta</jtitle><date>2011-01-10</date><risdate>2011</risdate><volume>512</volume><issue>1</issue><spage>129</spage><epage>133</epage><pages>129-133</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4Si 2O 7F 2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.09.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6031
ispartof Thermochimica acta, 2011-01, Vol.512 (1), p.129-133
issn 0040-6031
1872-762X
language eng
recordid cdi_proquest_miscellaneous_1221883129
source ScienceDirect Journals (5 years ago - present)
subjects carbon
chemical composition
Computer programs
computer software
Cross-disciplinary physics: materials science
rheology
Cuspidine
Exact sciences and technology
Flux
heat transfer
Materials science
melting
melting point
Mineralogical phases
Molds
Other topics in materials science
Phase diagrams
Phases
physical phases
Physics
powders
shrinkage
Software
Solidification
steel
Strands
Thermodynamic
Thermodynamics
X-radiation
X-ray diffraction
title Thermodynamic modeling of mineralogical phases formed by continuous casting powders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20mineralogical%20phases%20formed%20by%20continuous%20casting%20powders&rft.jtitle=Thermochimica%20acta&rft.au=Romo-Casta%C3%B1eda,%20Julio&rft.date=2011-01-10&rft.volume=512&rft.issue=1&rft.spage=129&rft.epage=133&rft.pages=129-133&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.09.014&rft_dat=%3Cproquest_cross%3E1221883129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221883129&rft_id=info:pmid/&rft_els_id=S004060311000359X&rfr_iscdi=true