Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model

In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hindmarsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical analysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2012, Vol.67 (1), p.847-857
Hauptverfasser: Liu, Xuanliang, Liu, Shenquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the codimension-2 bifurcations of equilibria of a two-dimensional Hindmarsh–Rose model. By using the bifurcation methods and techniques, we give a rigorous mathematical analysis of Bautin bifurcation. The main result is that no more than two limit cycles can be bifurcated from the equilibrium via Hopf bifurcation; sufficient conditions for the existence of one or two limit cycles are obtained. This paper also shows that the model undergoes a Bogdanov–Takens bifurcation which includes a saddle-node bifurcation, an Andronov–Hopf bifurcation, and a homoclinic bifurcation. In some case, the globally asymptotical stability is discussed.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-011-0030-6