A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres

Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architectu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2012-09, Vol.11 (9), p.795-801
Hauptverfasser: Pang, Changhyun, Lee, Gil-Yong, Kim, Tae-il, Kim, Sang Moon, Kim, Hong Nam, Ahn, Sung-Hoon, Suh, Kahp-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 9
container_start_page 795
container_title Nature materials
container_volume 11
creator Pang, Changhyun
Lee, Gil-Yong
Kim, Tae-il
Kim, Sang Moon
Kim, Hong Nam
Ahn, Sung-Hoon
Suh, Kahp-Yang
description Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface. Flexible strain-gauge sensors, which could eventually be used in electronic skin, generally require complex device architectures. A simple and highly sensitive resistive sensor for the detection of pressure, shear and torsion with discernible strain-gauge factors has now been fabricated using two interlocked arrays of platinum-coated polymer nanofibres.
doi_str_mv 10.1038/nmat3380
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221876219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1114950993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a9669f9afea9750d74f754144a9419884ac51004e2f05516ea7c24a62e749c823</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgiq1V8AlkwI0uRpNMrstSvEHBja6HdHoyRqeZmswUfXtTWy-4cZVw8uUPOQehY4IvCC7UpV-YrigU3kFDwqTImRB4d7snhNIBOojxGWNKOBf7aECpYpQTMkTlOLMNvLlZA5nx8-zJ1U_NexbBR9e5FWSxC8b5vDZ9DZ_lNmR9dL7OAqwgxM-bzncQmrZ6Wddbm3njW-tmAeIh2rOmiXC0XUfo8frqYXKbT-9v7ibjaV4VUnW50UJoq40FoyXHc8ms5IwwZjQjWilmKk4wZkAt5pwIMLKizAgKkulK0WKEzja5y9C-9hC7cuFiBU1jPLR9LFMTiJKCEv0_JYRpjrUuEj39Q5_bPvj0kTL1XVMseSF-AqvQxhjAlsvgFia8J7R2qvyaT6In28B-toD5N_waSALnGxDTka8h_H7xT9gHc3eYKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039207536</pqid></control><display><type>article</type><title>A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pang, Changhyun ; Lee, Gil-Yong ; Kim, Tae-il ; Kim, Sang Moon ; Kim, Hong Nam ; Ahn, Sung-Hoon ; Suh, Kahp-Yang</creator><creatorcontrib>Pang, Changhyun ; Lee, Gil-Yong ; Kim, Tae-il ; Kim, Sang Moon ; Kim, Hong Nam ; Ahn, Sung-Hoon ; Suh, Kahp-Yang</creatorcontrib><description>Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface. Flexible strain-gauge sensors, which could eventually be used in electronic skin, generally require complex device architectures. A simple and highly sensitive resistive sensor for the detection of pressure, shear and torsion with discernible strain-gauge factors has now been fabricated using two interlocked arrays of platinum-coated polymer nanofibres.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3380</identifier><identifier>PMID: 22842511</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1009 ; 639/301/357 ; 639/301/923/1028 ; 639/301/930/1032 ; Arrays ; Biomaterials ; Biopolymers ; Biosensors ; Bouncing ; Chemistry and Materials Science ; Condensed Matter Physics ; Droplets ; Electronics ; Human ; Hydrophobic surfaces ; Materials Science ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Polymers ; Sensors</subject><ispartof>Nature materials, 2012-09, Vol.11 (9), p.795-801</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a9669f9afea9750d74f754144a9419884ac51004e2f05516ea7c24a62e749c823</citedby><cites>FETCH-LOGICAL-c378t-a9669f9afea9750d74f754144a9419884ac51004e2f05516ea7c24a62e749c823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3380$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3380$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22842511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Lee, Gil-Yong</creatorcontrib><creatorcontrib>Kim, Tae-il</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Kim, Hong Nam</creatorcontrib><creatorcontrib>Ahn, Sung-Hoon</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><title>A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface. Flexible strain-gauge sensors, which could eventually be used in electronic skin, generally require complex device architectures. A simple and highly sensitive resistive sensor for the detection of pressure, shear and torsion with discernible strain-gauge factors has now been fabricated using two interlocked arrays of platinum-coated polymer nanofibres.</description><subject>639/301/1005/1009</subject><subject>639/301/357</subject><subject>639/301/923/1028</subject><subject>639/301/930/1032</subject><subject>Arrays</subject><subject>Biomaterials</subject><subject>Biopolymers</subject><subject>Biosensors</subject><subject>Bouncing</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Droplets</subject><subject>Electronics</subject><subject>Human</subject><subject>Hydrophobic surfaces</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polymers</subject><subject>Sensors</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0ctKAzEUBuAgiq1V8AlkwI0uRpNMrstSvEHBja6HdHoyRqeZmswUfXtTWy-4cZVw8uUPOQehY4IvCC7UpV-YrigU3kFDwqTImRB4d7snhNIBOojxGWNKOBf7aECpYpQTMkTlOLMNvLlZA5nx8-zJ1U_NexbBR9e5FWSxC8b5vDZ9DZ_lNmR9dL7OAqwgxM-bzncQmrZ6Wddbm3njW-tmAeIh2rOmiXC0XUfo8frqYXKbT-9v7ibjaV4VUnW50UJoq40FoyXHc8ms5IwwZjQjWilmKk4wZkAt5pwIMLKizAgKkulK0WKEzja5y9C-9hC7cuFiBU1jPLR9LFMTiJKCEv0_JYRpjrUuEj39Q5_bPvj0kTL1XVMseSF-AqvQxhjAlsvgFia8J7R2qvyaT6In28B-toD5N_waSALnGxDTka8h_H7xT9gHc3eYKg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Pang, Changhyun</creator><creator>Lee, Gil-Yong</creator><creator>Kim, Tae-il</creator><creator>Kim, Sang Moon</creator><creator>Kim, Hong Nam</creator><creator>Ahn, Sung-Hoon</creator><creator>Suh, Kahp-Yang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres</title><author>Pang, Changhyun ; Lee, Gil-Yong ; Kim, Tae-il ; Kim, Sang Moon ; Kim, Hong Nam ; Ahn, Sung-Hoon ; Suh, Kahp-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a9669f9afea9750d74f754144a9419884ac51004e2f05516ea7c24a62e749c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/1005/1009</topic><topic>639/301/357</topic><topic>639/301/923/1028</topic><topic>639/301/930/1032</topic><topic>Arrays</topic><topic>Biomaterials</topic><topic>Biopolymers</topic><topic>Biosensors</topic><topic>Bouncing</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Droplets</topic><topic>Electronics</topic><topic>Human</topic><topic>Hydrophobic surfaces</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polymers</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Changhyun</creatorcontrib><creatorcontrib>Lee, Gil-Yong</creatorcontrib><creatorcontrib>Kim, Tae-il</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Kim, Hong Nam</creatorcontrib><creatorcontrib>Ahn, Sung-Hoon</creatorcontrib><creatorcontrib>Suh, Kahp-Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Changhyun</au><au>Lee, Gil-Yong</au><au>Kim, Tae-il</au><au>Kim, Sang Moon</au><au>Kim, Hong Nam</au><au>Ahn, Sung-Hoon</au><au>Suh, Kahp-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>11</volume><issue>9</issue><spage>795</spage><epage>801</epage><pages>795-801</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface. Flexible strain-gauge sensors, which could eventually be used in electronic skin, generally require complex device architectures. A simple and highly sensitive resistive sensor for the detection of pressure, shear and torsion with discernible strain-gauge factors has now been fabricated using two interlocked arrays of platinum-coated polymer nanofibres.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22842511</pmid><doi>10.1038/nmat3380</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2012-09, Vol.11 (9), p.795-801
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1221876219
source SpringerLink Journals; Nature Journals Online
subjects 639/301/1005/1009
639/301/357
639/301/923/1028
639/301/930/1032
Arrays
Biomaterials
Biopolymers
Biosensors
Bouncing
Chemistry and Materials Science
Condensed Matter Physics
Droplets
Electronics
Human
Hydrophobic surfaces
Materials Science
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Polymers
Sensors
title A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20flexible%20and%20highly%20sensitive%20strain-gauge%20sensor%20using%20reversible%20interlocking%20of%20nanofibres&rft.jtitle=Nature%20materials&rft.au=Pang,%20Changhyun&rft.date=2012-09-01&rft.volume=11&rft.issue=9&rft.spage=795&rft.epage=801&rft.pages=795-801&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3380&rft_dat=%3Cproquest_cross%3E1114950993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039207536&rft_id=info:pmid/22842511&rfr_iscdi=true