Low Concentration Sodium Chloride Salinity Detection System

An AC Andersons bridge coupled with a low matching impedance solenoid coil is employed to detect and measure low concentration of sodium chloride aqueous solutions (ppm) is designed and constructed. The sensory system is independent of the excited driving frequency. The finite element method simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors & transducers 2012-06, Vol.141 (6), p.127-127
Hauptverfasser: Lim, Hee C, Ooi, Hio Giap, Hor, Yew Fong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 6
container_start_page 127
container_title Sensors & transducers
container_volume 141
creator Lim, Hee C
Ooi, Hio Giap
Hor, Yew Fong
description An AC Andersons bridge coupled with a low matching impedance solenoid coil is employed to detect and measure low concentration of sodium chloride aqueous solutions (ppm) is designed and constructed. The sensory system is independent of the excited driving frequency. The finite element method simulation of the sensor element is simulated and modeled with approximately 1.23 million 3D tetrahedron meshes with CST EM studio. The constructed induction sensor is sensitive and able to observe Millipore Milli-Q low resistivity (18.2 MOhm*cm) ultrapure water and various concentration of lab prepared sodium chloride solutions. The observed sodium chloride system sensitivity is -1.5228 × 10^sup -4^ ln NaCl(ppm)} with high correlation constant of R = 0.9835. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221875788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221875788</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-ab5f32742a12bc6abf5360bfd1e8ed3d1982b0b8f2b8f5f1d957c8733992e0893</originalsourceid><addsrcrecordid>eNpdzs1KxDAUBeAgCpZx3qHgxk0h96ZpElxJ_YWCi9F1SZoEO7TJ2KTIvL0D48rF4Ww-DueCFCCwqXgt1CUpkNGmkhz4NdmmtKeUAhVCIS3IfRd_yjaGwYW86DzGUO6iHde5bL-muIzWlTs9jWHMx_LRZTecyTFlN9-QK6-n5LZ_vSGfz08f7WvVvb-8tQ9ddQAGudKGe4aiRg1ohkYbz1lDjbfgpLPMgpJoqJEeT-EerOJikIIxpdBRqdiG3J13D0v8Xl3K_TymwU2TDi6uqQdEkIILKU_09h_dx3UJp3c9UBRQS6EY-wUAqFMW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027148793</pqid></control><display><type>article</type><title>Low Concentration Sodium Chloride Salinity Detection System</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lim, Hee C ; Ooi, Hio Giap ; Hor, Yew Fong</creator><creatorcontrib>Lim, Hee C ; Ooi, Hio Giap ; Hor, Yew Fong</creatorcontrib><description>An AC Andersons bridge coupled with a low matching impedance solenoid coil is employed to detect and measure low concentration of sodium chloride aqueous solutions (ppm) is designed and constructed. The sensory system is independent of the excited driving frequency. The finite element method simulation of the sensor element is simulated and modeled with approximately 1.23 million 3D tetrahedron meshes with CST EM studio. The constructed induction sensor is sensitive and able to observe Millipore Milli-Q low resistivity (18.2 MOhm*cm) ultrapure water and various concentration of lab prepared sodium chloride solutions. The observed sodium chloride system sensitivity is -1.5228 × 10^sup -4^ ln NaCl(ppm)} with high correlation constant of R = 0.9835. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 2306-8515</identifier><identifier>ISSN: 1726-5479</identifier><identifier>EISSN: 1726-5479</identifier><language>eng</language><publisher>Toronto: IFSA Publishing, S.L</publisher><subject>Aqueous solutions ; Computer simulation ; Construction ; Finite element method ; Hypertension ; Low concentrations ; Mathematical models ; Mortality ; Receivers &amp; amplifiers ; Salinity ; Salt ; Sensors ; Sodium ; Sodium chloride ; Three dimensional</subject><ispartof>Sensors &amp; transducers, 2012-06, Vol.141 (6), p.127-127</ispartof><rights>Copyright International Frequency Sensor Association Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Lim, Hee C</creatorcontrib><creatorcontrib>Ooi, Hio Giap</creatorcontrib><creatorcontrib>Hor, Yew Fong</creatorcontrib><title>Low Concentration Sodium Chloride Salinity Detection System</title><title>Sensors &amp; transducers</title><description>An AC Andersons bridge coupled with a low matching impedance solenoid coil is employed to detect and measure low concentration of sodium chloride aqueous solutions (ppm) is designed and constructed. The sensory system is independent of the excited driving frequency. The finite element method simulation of the sensor element is simulated and modeled with approximately 1.23 million 3D tetrahedron meshes with CST EM studio. The constructed induction sensor is sensitive and able to observe Millipore Milli-Q low resistivity (18.2 MOhm*cm) ultrapure water and various concentration of lab prepared sodium chloride solutions. The observed sodium chloride system sensitivity is -1.5228 × 10^sup -4^ ln NaCl(ppm)} with high correlation constant of R = 0.9835. [PUBLICATION ABSTRACT]</description><subject>Aqueous solutions</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Finite element method</subject><subject>Hypertension</subject><subject>Low concentrations</subject><subject>Mathematical models</subject><subject>Mortality</subject><subject>Receivers &amp; amplifiers</subject><subject>Salinity</subject><subject>Salt</subject><subject>Sensors</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Three dimensional</subject><issn>2306-8515</issn><issn>1726-5479</issn><issn>1726-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdzs1KxDAUBeAgCpZx3qHgxk0h96ZpElxJ_YWCi9F1SZoEO7TJ2KTIvL0D48rF4Ww-DueCFCCwqXgt1CUpkNGmkhz4NdmmtKeUAhVCIS3IfRd_yjaGwYW86DzGUO6iHde5bL-muIzWlTs9jWHMx_LRZTecyTFlN9-QK6-n5LZ_vSGfz08f7WvVvb-8tQ9ddQAGudKGe4aiRg1ohkYbz1lDjbfgpLPMgpJoqJEeT-EerOJikIIxpdBRqdiG3J13D0v8Xl3K_TymwU2TDi6uqQdEkIILKU_09h_dx3UJp3c9UBRQS6EY-wUAqFMW</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Lim, Hee C</creator><creator>Ooi, Hio Giap</creator><creator>Hor, Yew Fong</creator><general>IFSA Publishing, S.L</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20120601</creationdate><title>Low Concentration Sodium Chloride Salinity Detection System</title><author>Lim, Hee C ; Ooi, Hio Giap ; Hor, Yew Fong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-ab5f32742a12bc6abf5360bfd1e8ed3d1982b0b8f2b8f5f1d957c8733992e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aqueous solutions</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Finite element method</topic><topic>Hypertension</topic><topic>Low concentrations</topic><topic>Mathematical models</topic><topic>Mortality</topic><topic>Receivers &amp; amplifiers</topic><topic>Salinity</topic><topic>Salt</topic><topic>Sensors</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Hee C</creatorcontrib><creatorcontrib>Ooi, Hio Giap</creatorcontrib><creatorcontrib>Hor, Yew Fong</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Sensors &amp; transducers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Hee C</au><au>Ooi, Hio Giap</au><au>Hor, Yew Fong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Concentration Sodium Chloride Salinity Detection System</atitle><jtitle>Sensors &amp; transducers</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>141</volume><issue>6</issue><spage>127</spage><epage>127</epage><pages>127-127</pages><issn>2306-8515</issn><issn>1726-5479</issn><eissn>1726-5479</eissn><abstract>An AC Andersons bridge coupled with a low matching impedance solenoid coil is employed to detect and measure low concentration of sodium chloride aqueous solutions (ppm) is designed and constructed. The sensory system is independent of the excited driving frequency. The finite element method simulation of the sensor element is simulated and modeled with approximately 1.23 million 3D tetrahedron meshes with CST EM studio. The constructed induction sensor is sensitive and able to observe Millipore Milli-Q low resistivity (18.2 MOhm*cm) ultrapure water and various concentration of lab prepared sodium chloride solutions. The observed sodium chloride system sensitivity is -1.5228 × 10^sup -4^ ln NaCl(ppm)} with high correlation constant of R = 0.9835. [PUBLICATION ABSTRACT]</abstract><cop>Toronto</cop><pub>IFSA Publishing, S.L</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-8515
ispartof Sensors & transducers, 2012-06, Vol.141 (6), p.127-127
issn 2306-8515
1726-5479
1726-5479
language eng
recordid cdi_proquest_miscellaneous_1221875788
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aqueous solutions
Computer simulation
Construction
Finite element method
Hypertension
Low concentrations
Mathematical models
Mortality
Receivers & amplifiers
Salinity
Salt
Sensors
Sodium
Sodium chloride
Three dimensional
title Low Concentration Sodium Chloride Salinity Detection System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Concentration%20Sodium%20Chloride%20Salinity%20Detection%20System&rft.jtitle=Sensors%20&%20transducers&rft.au=Lim,%20Hee%20C&rft.date=2012-06-01&rft.volume=141&rft.issue=6&rft.spage=127&rft.epage=127&rft.pages=127-127&rft.issn=2306-8515&rft.eissn=1726-5479&rft_id=info:doi/&rft_dat=%3Cproquest%3E1221875788%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027148793&rft_id=info:pmid/&rfr_iscdi=true