Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating

Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophoto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2012, Vol.61 (1), p.69-76
Hauptverfasser: Bennaceur, J., Mechiakh, R., Bousbih, F., Jaouadi, M., Chtourou, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 69
container_title Journal of sol-gel science and technology
container_volume 61
creator Bennaceur, J.
Mechiakh, R.
Bousbih, F.
Jaouadi, M.
Chtourou, R.
description Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe 3+ -doped TiO 2 thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe 3+ increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe 3+ concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe 3+ content. The optical band gap ( E g ) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe 3+ content.
doi_str_mv 10.1007/s10971-011-2592-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221875004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082223196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhQtRsB19AHcBEUakND-VpGopw4wKA7MZ10U6uenOkE7KJLXo3byDz-PL-CQm9qAgiIsQcu-Xc09yuu4lwe8IxvJ9JniSpMeE9JRPtJePug3hkvXDOIjH3QZPdOyxxPJp9yznO4wxH4jcdN8vrQVdULRIhQDKu7BDBQ4LJFXWBLmWTevu3W6PdAwFwi-67AG5FANydZ1fAXv7pjdxaddroSQVsiutp4IqKsOP-29pLc4DWvb12CSCClGnYy7K17GAbt0NrbouIOv8IaMlwaISGLQ9ohx9VdiBR7nOqEZUqaOed0-s8hlePOxn3Zery9uLT_31zcfPFx-ue80GWvph4JhqMrHRTkzXX1Gaac2E5FrYwRhCGCV2a5gx2ApGBOPWcMMF3wprtGRn3flJd0nx6wq5zAeXNXivAsQ1z4RSMkqO8fB_FI-UUkYmUdFXf6F3cU2hPmSmNUTOxCgaRU6UTjHnBHZekjuodKxSc8t-PmU_1-znlv3c_L5-UFZZK29rGtrl3xcp51Jw2szSE5drK-wg_XHwb_GfZSzCAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259536866</pqid></control><display><type>article</type><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</creator><creatorcontrib>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</creatorcontrib><description>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe 3+ -doped TiO 2 thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe 3+ increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe 3+ concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe 3+ content. The optical band gap ( E g ) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe 3+ content.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-011-2592-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anatase ; Annealing ; Atomic beam spectroscopy ; Atomic force microscopy ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composites ; Crystallites ; Energy gap ; Exact sciences and technology ; Ferric ions ; General and physical chemistry ; Glass ; Grain size ; Inorganic Chemistry ; Iron ; Materials Science ; Morphology ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Particle size ; Phase transitions ; Raman spectroscopy ; Rutile ; Sol-gel processes ; Spin coating ; Thin films ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2012, Vol.61 (1), p.69-76</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</citedby><cites>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-011-2592-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-011-2592-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25576524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennaceur, J.</creatorcontrib><creatorcontrib>Mechiakh, R.</creatorcontrib><creatorcontrib>Bousbih, F.</creatorcontrib><creatorcontrib>Jaouadi, M.</creatorcontrib><creatorcontrib>Chtourou, R.</creatorcontrib><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe 3+ -doped TiO 2 thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe 3+ increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe 3+ concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe 3+ content. The optical band gap ( E g ) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe 3+ content.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composites</subject><subject>Crystallites</subject><subject>Energy gap</subject><subject>Exact sciences and technology</subject><subject>Ferric ions</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Raman spectroscopy</subject><subject>Rutile</subject><subject>Sol-gel processes</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkc2KFDEUhQtRsB19AHcBEUakND-VpGopw4wKA7MZ10U6uenOkE7KJLXo3byDz-PL-CQm9qAgiIsQcu-Xc09yuu4lwe8IxvJ9JniSpMeE9JRPtJePug3hkvXDOIjH3QZPdOyxxPJp9yznO4wxH4jcdN8vrQVdULRIhQDKu7BDBQ4LJFXWBLmWTevu3W6PdAwFwi-67AG5FANydZ1fAXv7pjdxaddroSQVsiutp4IqKsOP-29pLc4DWvb12CSCClGnYy7K17GAbt0NrbouIOv8IaMlwaISGLQ9ohx9VdiBR7nOqEZUqaOed0-s8hlePOxn3Zery9uLT_31zcfPFx-ue80GWvph4JhqMrHRTkzXX1Gaac2E5FrYwRhCGCV2a5gx2ApGBOPWcMMF3wprtGRn3flJd0nx6wq5zAeXNXivAsQ1z4RSMkqO8fB_FI-UUkYmUdFXf6F3cU2hPmSmNUTOxCgaRU6UTjHnBHZekjuodKxSc8t-PmU_1-znlv3c_L5-UFZZK29rGtrl3xcp51Jw2szSE5drK-wg_XHwb_GfZSzCAA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Bennaceur, J.</creator><creator>Mechiakh, R.</creator><creator>Bousbih, F.</creator><creator>Jaouadi, M.</creator><creator>Chtourou, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><author>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composites</topic><topic>Crystallites</topic><topic>Energy gap</topic><topic>Exact sciences and technology</topic><topic>Ferric ions</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Raman spectroscopy</topic><topic>Rutile</topic><topic>Sol-gel processes</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennaceur, J.</creatorcontrib><creatorcontrib>Mechiakh, R.</creatorcontrib><creatorcontrib>Bousbih, F.</creatorcontrib><creatorcontrib>Jaouadi, M.</creatorcontrib><creatorcontrib>Chtourou, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennaceur, J.</au><au>Mechiakh, R.</au><au>Bousbih, F.</au><au>Jaouadi, M.</au><au>Chtourou, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2012</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe 3+ -doped TiO 2 thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe 3+ increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe 3+ concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe 3+ content. The optical band gap ( E g ) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe 3+ content.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-011-2592-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2012, Vol.61 (1), p.69-76
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_miscellaneous_1221875004
source SpringerLink Journals - AutoHoldings
subjects Anatase
Annealing
Atomic beam spectroscopy
Atomic force microscopy
Ceramics
Chemistry
Chemistry and Materials Science
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Composites
Crystallites
Energy gap
Exact sciences and technology
Ferric ions
General and physical chemistry
Glass
Grain size
Inorganic Chemistry
Iron
Materials Science
Morphology
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper
Particle size
Phase transitions
Raman spectroscopy
Rutile
Sol-gel processes
Spin coating
Thin films
Titanium dioxide
X-ray diffraction
title Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20annealing%20temperatures%20and%20of%20high%20content%20of%20the%20iron%20ion%20(Fe3+)-doping%20on%20transition%20anatase%E2%80%93rutile%20phase%20of%20nanocrystalline%20TiO2%20thin%20films%20prepared%20by%20sol%E2%80%93gel%20spin%20coating&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Bennaceur,%20J.&rft.date=2012&rft.volume=61&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-011-2592-7&rft_dat=%3Cproquest_cross%3E1082223196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259536866&rft_id=info:pmid/&rfr_iscdi=true