Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating
Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO 2 have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophoto...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2012, Vol.61 (1), p.69-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Journal of sol-gel science and technology |
container_volume | 61 |
creator | Bennaceur, J. Mechiakh, R. Bousbih, F. Jaouadi, M. Chtourou, R. |
description | Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO
2
have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe
3+
-doped TiO
2
thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe
3+
increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe
3+
concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe
3+
content. The optical band gap (
E
g
) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe
3+
content. |
doi_str_mv | 10.1007/s10971-011-2592-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221875004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082223196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhQtRsB19AHcBEUakND-VpGopw4wKA7MZ10U6uenOkE7KJLXo3byDz-PL-CQm9qAgiIsQcu-Xc09yuu4lwe8IxvJ9JniSpMeE9JRPtJePug3hkvXDOIjH3QZPdOyxxPJp9yznO4wxH4jcdN8vrQVdULRIhQDKu7BDBQ4LJFXWBLmWTevu3W6PdAwFwi-67AG5FANydZ1fAXv7pjdxaddroSQVsiutp4IqKsOP-29pLc4DWvb12CSCClGnYy7K17GAbt0NrbouIOv8IaMlwaISGLQ9ohx9VdiBR7nOqEZUqaOed0-s8hlePOxn3Zery9uLT_31zcfPFx-ue80GWvph4JhqMrHRTkzXX1Gaac2E5FrYwRhCGCV2a5gx2ApGBOPWcMMF3wprtGRn3flJd0nx6wq5zAeXNXivAsQ1z4RSMkqO8fB_FI-UUkYmUdFXf6F3cU2hPmSmNUTOxCgaRU6UTjHnBHZekjuodKxSc8t-PmU_1-znlv3c_L5-UFZZK29rGtrl3xcp51Jw2szSE5drK-wg_XHwb_GfZSzCAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259536866</pqid></control><display><type>article</type><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</creator><creatorcontrib>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</creatorcontrib><description>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO
2
have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe
3+
-doped TiO
2
thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe
3+
increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe
3+
concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe
3+
content. The optical band gap (
E
g
) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe
3+
content.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-011-2592-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Anatase ; Annealing ; Atomic beam spectroscopy ; Atomic force microscopy ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composites ; Crystallites ; Energy gap ; Exact sciences and technology ; Ferric ions ; General and physical chemistry ; Glass ; Grain size ; Inorganic Chemistry ; Iron ; Materials Science ; Morphology ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Particle size ; Phase transitions ; Raman spectroscopy ; Rutile ; Sol-gel processes ; Spin coating ; Thin films ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2012, Vol.61 (1), p.69-76</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>2015 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</citedby><cites>FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-011-2592-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-011-2592-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25576524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennaceur, J.</creatorcontrib><creatorcontrib>Mechiakh, R.</creatorcontrib><creatorcontrib>Bousbih, F.</creatorcontrib><creatorcontrib>Jaouadi, M.</creatorcontrib><creatorcontrib>Chtourou, R.</creatorcontrib><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO
2
have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe
3+
-doped TiO
2
thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe
3+
increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe
3+
concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe
3+
content. The optical band gap (
E
g
) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe
3+
content.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composites</subject><subject>Crystallites</subject><subject>Energy gap</subject><subject>Exact sciences and technology</subject><subject>Ferric ions</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Raman spectroscopy</subject><subject>Rutile</subject><subject>Sol-gel processes</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkc2KFDEUhQtRsB19AHcBEUakND-VpGopw4wKA7MZ10U6uenOkE7KJLXo3byDz-PL-CQm9qAgiIsQcu-Xc09yuu4lwe8IxvJ9JniSpMeE9JRPtJePug3hkvXDOIjH3QZPdOyxxPJp9yznO4wxH4jcdN8vrQVdULRIhQDKu7BDBQ4LJFXWBLmWTevu3W6PdAwFwi-67AG5FANydZ1fAXv7pjdxaddroSQVsiutp4IqKsOP-29pLc4DWvb12CSCClGnYy7K17GAbt0NrbouIOv8IaMlwaISGLQ9ohx9VdiBR7nOqEZUqaOed0-s8hlePOxn3Zery9uLT_31zcfPFx-ue80GWvph4JhqMrHRTkzXX1Gaac2E5FrYwRhCGCV2a5gx2ApGBOPWcMMF3wprtGRn3flJd0nx6wq5zAeXNXivAsQ1z4RSMkqO8fB_FI-UUkYmUdFXf6F3cU2hPmSmNUTOxCgaRU6UTjHnBHZekjuodKxSc8t-PmU_1-znlv3c_L5-UFZZK29rGtrl3xcp51Jw2szSE5drK-wg_XHwb_GfZSzCAA</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Bennaceur, J.</creator><creator>Mechiakh, R.</creator><creator>Bousbih, F.</creator><creator>Jaouadi, M.</creator><creator>Chtourou, R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2012</creationdate><title>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</title><author>Bennaceur, J. ; Mechiakh, R. ; Bousbih, F. ; Jaouadi, M. ; Chtourou, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-44502c1938f93c573ac3cc3675c6f4dd11321fbd3dd0f631635fd5d565b6fdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composites</topic><topic>Crystallites</topic><topic>Energy gap</topic><topic>Exact sciences and technology</topic><topic>Ferric ions</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Raman spectroscopy</topic><topic>Rutile</topic><topic>Sol-gel processes</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennaceur, J.</creatorcontrib><creatorcontrib>Mechiakh, R.</creatorcontrib><creatorcontrib>Bousbih, F.</creatorcontrib><creatorcontrib>Jaouadi, M.</creatorcontrib><creatorcontrib>Chtourou, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bennaceur, J.</au><au>Mechiakh, R.</au><au>Bousbih, F.</au><au>Jaouadi, M.</au><au>Chtourou, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2012</date><risdate>2012</risdate><volume>61</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Titanium dioxide doped with iron (III) was prepared by sol–gel Spin Coating method. The phase structures, morphologies, particle size of the doped TiO
2
have been characterized by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and ultraviolet–visible (UV–Vis) spectrophotometer. The XRD and Raman results show that the 10% Fe
3+
-doped TiO
2
thin films crystallize in anatase phase between 600 and 800 °C, and into the anatase–rutile phase at 1,000 °C, and further into the rutile phase when the content of Fe
3+
increases (20%). The grain size calculated from XRD patterns shows that the crystallinity of the obtained anatase particles increased from 39.4 to 43.4 nm as the temperature of annealing increase, whereas the size of rutile crystallites increases, with increasing Fe
3+
concentrations from 36.9 to 38.1 nm. The AFM surface morphology results confirmed that the particle size increases by increasing the annealing temperature and also with an increasing of Fe
3+
content. The optical band gap (
E
g
) of the films was determined by the UV–Vis spectrophotometer. We have found that the optical band gap decreased with an increasing of annealing temperatures and also with an increasing of Fe
3+
content.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-011-2592-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2012, Vol.61 (1), p.69-76 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221875004 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anatase Annealing Atomic beam spectroscopy Atomic force microscopy Ceramics Chemistry Chemistry and Materials Science Colloidal gels. Colloidal sols Colloidal state and disperse state Composites Crystallites Energy gap Exact sciences and technology Ferric ions General and physical chemistry Glass Grain size Inorganic Chemistry Iron Materials Science Morphology Nanotechnology Natural Materials Optical and Electronic Materials Original Paper Particle size Phase transitions Raman spectroscopy Rutile Sol-gel processes Spin coating Thin films Titanium dioxide X-ray diffraction |
title | Effect of annealing temperatures and of high content of the iron ion (Fe3+)-doping on transition anatase–rutile phase of nanocrystalline TiO2 thin films prepared by sol–gel spin coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20annealing%20temperatures%20and%20of%20high%20content%20of%20the%20iron%20ion%20(Fe3+)-doping%20on%20transition%20anatase%E2%80%93rutile%20phase%20of%20nanocrystalline%20TiO2%20thin%20films%20prepared%20by%20sol%E2%80%93gel%20spin%20coating&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Bennaceur,%20J.&rft.date=2012&rft.volume=61&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-011-2592-7&rft_dat=%3Cproquest_cross%3E1082223196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259536866&rft_id=info:pmid/&rfr_iscdi=true |