Geometric ergodicity and the spectral gap of non-reversible Markov chains

We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2  =  L 2 (π), where π is the invariant measure of the chain. This observation is, in part,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2012-10, Vol.154 (1-2), p.327-339
Hauptverfasser: Kontoyiannis, I., Meyn, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 1-2
container_start_page 327
container_title Probability theory and related fields
container_volume 154
creator Kontoyiannis, I.
Meyn, S. P.
description We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2  =  L 2 (π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in . If the chain is reversible, the same equivalence holds with L 2 in place of . In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in but not in L 2 . Moreover, if a chain admits a spectral gap in L 2 , then for any there exists a Lyapunov function such that V h dominates h and the chain admits a spectral gap in . The relationship between the size of the spectral gap in or L 2 , and the rate at which the chain converges to equilibrium is also briefly discussed.
doi_str_mv 10.1007/s00440-011-0373-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221870743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782381021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</originalsourceid><addsrcrecordid>eNp9kU9LAzEQR4MoWP98AG8BL16iM0k2WY8iWgXFi55Dks62q9tNTbaC394t9SCCnuby3o-Bx9gJwjkC2IsCoDUIQBSgrBJ6h01QKykkGL3LJoC2FjVUuM8OSnkFAKm0nLD7KaUlDbmNnPI8zdrYDp_c9zM-LIiXFcUh-47P_YqnhvepF5k-KJc2dMQffX5LHzwufNuXI7bX-K7Q8fc9ZC-3N8_Xd-LhaXp_ffUgoq7NIIK5VLUBHaqaLOpZpWuQ1ACRt4RVkJUJsokqeKM0zhokFUKwSNY2MWpUh-xsu7vK6X1NZXDLtkTqOt9TWheHUmJtwWo1oqe_0Ne0zv34nZPGoLRSKvkfhXBZSQBTmZHCLRVzKiVT41a5Xfr8OUJuk8BtE7gxgdskcHp05NYpI9vPKf9c_kv6AscRhx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095200656</pqid></control><display><type>article</type><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Kontoyiannis, I. ; Meyn, S. P.</creator><creatorcontrib>Kontoyiannis, I. ; Meyn, S. P.</creatorcontrib><description>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2  =  L 2 (π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in . If the chain is reversible, the same equivalence holds with L 2 in place of . In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in but not in L 2 . Moreover, if a chain admits a spectral gap in L 2 , then for any there exists a Lyapunov function such that V h dominates h and the chain admits a spectral gap in . The relationship between the size of the spectral gap in or L 2 , and the rate at which the chain converges to equilibrium is also briefly discussed.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-011-0373-4</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Chains ; Economics ; Ergodic processes ; Finance ; Hilbert space ; Insurance ; Liapunov functions ; Management ; Markov analysis ; Markov chains ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability theory ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Scholarships &amp; fellowships ; Spectra ; Spectral theory ; Spectrum analysis ; Statistics for Business ; Stochastic models ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2012-10, Vol.154 (1-2), p.327-339</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</citedby><cites>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-011-0373-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-011-0373-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kontoyiannis, I.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2  =  L 2 (π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in . If the chain is reversible, the same equivalence holds with L 2 in place of . In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in but not in L 2 . Moreover, if a chain admits a spectral gap in L 2 , then for any there exists a Lyapunov function such that V h dominates h and the chain admits a spectral gap in . The relationship between the size of the spectral gap in or L 2 , and the rate at which the chain converges to equilibrium is also briefly discussed.</description><subject>Chains</subject><subject>Economics</subject><subject>Ergodic processes</subject><subject>Finance</subject><subject>Hilbert space</subject><subject>Insurance</subject><subject>Liapunov functions</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Scholarships &amp; fellowships</subject><subject>Spectra</subject><subject>Spectral theory</subject><subject>Spectrum analysis</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9LAzEQR4MoWP98AG8BL16iM0k2WY8iWgXFi55Dks62q9tNTbaC394t9SCCnuby3o-Bx9gJwjkC2IsCoDUIQBSgrBJ6h01QKykkGL3LJoC2FjVUuM8OSnkFAKm0nLD7KaUlDbmNnPI8zdrYDp_c9zM-LIiXFcUh-47P_YqnhvepF5k-KJc2dMQffX5LHzwufNuXI7bX-K7Q8fc9ZC-3N8_Xd-LhaXp_ffUgoq7NIIK5VLUBHaqaLOpZpWuQ1ACRt4RVkJUJsokqeKM0zhokFUKwSNY2MWpUh-xsu7vK6X1NZXDLtkTqOt9TWheHUmJtwWo1oqe_0Ne0zv34nZPGoLRSKvkfhXBZSQBTmZHCLRVzKiVT41a5Xfr8OUJuk8BtE7gxgdskcHp05NYpI9vPKf9c_kv6AscRhx0</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kontoyiannis, I.</creator><creator>Meyn, S. P.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><author>Kontoyiannis, I. ; Meyn, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chains</topic><topic>Economics</topic><topic>Ergodic processes</topic><topic>Finance</topic><topic>Hilbert space</topic><topic>Insurance</topic><topic>Liapunov functions</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Scholarships &amp; fellowships</topic><topic>Spectra</topic><topic>Spectral theory</topic><topic>Spectrum analysis</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontoyiannis, I.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontoyiannis, I.</au><au>Meyn, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric ergodicity and the spectral gap of non-reversible Markov chains</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>154</volume><issue>1-2</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2  =  L 2 (π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in . If the chain is reversible, the same equivalence holds with L 2 in place of . In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in but not in L 2 . Moreover, if a chain admits a spectral gap in L 2 , then for any there exists a Lyapunov function such that V h dominates h and the chain admits a spectral gap in . The relationship between the size of the spectral gap in or L 2 , and the rate at which the chain converges to equilibrium is also briefly discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-011-0373-4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2012-10, Vol.154 (1-2), p.327-339
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_miscellaneous_1221870743
source SpringerLink; Business Source Complete
subjects Chains
Economics
Ergodic processes
Finance
Hilbert space
Insurance
Liapunov functions
Management
Markov analysis
Markov chains
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability theory
Probability Theory and Stochastic Processes
Quantitative Finance
Scholarships & fellowships
Spectra
Spectral theory
Spectrum analysis
Statistics for Business
Stochastic models
Studies
Theoretical
title Geometric ergodicity and the spectral gap of non-reversible Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20ergodicity%20and%20the%20spectral%20gap%20of%20non-reversible%20Markov%20chains&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Kontoyiannis,%20I.&rft.date=2012-10-01&rft.volume=154&rft.issue=1-2&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-011-0373-4&rft_dat=%3Cproquest_cross%3E2782381021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095200656&rft_id=info:pmid/&rfr_iscdi=true