Geometric ergodicity and the spectral gap of non-reversible Markov chains
We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted- L ∞ space , instead of the usual Hilbert space L 2 = L 2 (π), where π is the invariant measure of the chain. This observation is, in part,...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2012-10, Vol.154 (1-2), p.327-339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 1-2 |
container_start_page | 327 |
container_title | Probability theory and related fields |
container_volume | 154 |
creator | Kontoyiannis, I. Meyn, S. P. |
description | We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted-
L
∞
space
, instead of the usual Hilbert space
L
2
=
L
2
(π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in
. If the chain is reversible, the same equivalence holds with
L
2
in place of
. In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in
but not in
L
2
. Moreover, if a chain admits a spectral gap in
L
2
, then for any
there exists a Lyapunov function
such that
V
h
dominates
h
and the chain admits a spectral gap in
. The relationship between the size of the spectral gap in
or
L
2
, and the rate at which the chain converges to equilibrium is also briefly discussed. |
doi_str_mv | 10.1007/s00440-011-0373-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221870743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782381021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</originalsourceid><addsrcrecordid>eNp9kU9LAzEQR4MoWP98AG8BL16iM0k2WY8iWgXFi55Dks62q9tNTbaC394t9SCCnuby3o-Bx9gJwjkC2IsCoDUIQBSgrBJ6h01QKykkGL3LJoC2FjVUuM8OSnkFAKm0nLD7KaUlDbmNnPI8zdrYDp_c9zM-LIiXFcUh-47P_YqnhvepF5k-KJc2dMQffX5LHzwufNuXI7bX-K7Q8fc9ZC-3N8_Xd-LhaXp_ffUgoq7NIIK5VLUBHaqaLOpZpWuQ1ACRt4RVkJUJsokqeKM0zhokFUKwSNY2MWpUh-xsu7vK6X1NZXDLtkTqOt9TWheHUmJtwWo1oqe_0Ne0zv34nZPGoLRSKvkfhXBZSQBTmZHCLRVzKiVT41a5Xfr8OUJuk8BtE7gxgdskcHp05NYpI9vPKf9c_kv6AscRhx0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095200656</pqid></control><display><type>article</type><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><source>SpringerLink</source><source>Business Source Complete</source><creator>Kontoyiannis, I. ; Meyn, S. P.</creator><creatorcontrib>Kontoyiannis, I. ; Meyn, S. P.</creatorcontrib><description>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted-
L
∞
space
, instead of the usual Hilbert space
L
2
=
L
2
(π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in
. If the chain is reversible, the same equivalence holds with
L
2
in place of
. In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in
but not in
L
2
. Moreover, if a chain admits a spectral gap in
L
2
, then for any
there exists a Lyapunov function
such that
V
h
dominates
h
and the chain admits a spectral gap in
. The relationship between the size of the spectral gap in
or
L
2
, and the rate at which the chain converges to equilibrium is also briefly discussed.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-011-0373-4</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Chains ; Economics ; Ergodic processes ; Finance ; Hilbert space ; Insurance ; Liapunov functions ; Management ; Markov analysis ; Markov chains ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability theory ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Scholarships & fellowships ; Spectra ; Spectral theory ; Spectrum analysis ; Statistics for Business ; Stochastic models ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2012-10, Vol.154 (1-2), p.327-339</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</citedby><cites>FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-011-0373-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-011-0373-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kontoyiannis, I.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted-
L
∞
space
, instead of the usual Hilbert space
L
2
=
L
2
(π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in
. If the chain is reversible, the same equivalence holds with
L
2
in place of
. In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in
but not in
L
2
. Moreover, if a chain admits a spectral gap in
L
2
, then for any
there exists a Lyapunov function
such that
V
h
dominates
h
and the chain admits a spectral gap in
. The relationship between the size of the spectral gap in
or
L
2
, and the rate at which the chain converges to equilibrium is also briefly discussed.</description><subject>Chains</subject><subject>Economics</subject><subject>Ergodic processes</subject><subject>Finance</subject><subject>Hilbert space</subject><subject>Insurance</subject><subject>Liapunov functions</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Scholarships & fellowships</subject><subject>Spectra</subject><subject>Spectral theory</subject><subject>Spectrum analysis</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9LAzEQR4MoWP98AG8BL16iM0k2WY8iWgXFi55Dks62q9tNTbaC394t9SCCnuby3o-Bx9gJwjkC2IsCoDUIQBSgrBJ6h01QKykkGL3LJoC2FjVUuM8OSnkFAKm0nLD7KaUlDbmNnPI8zdrYDp_c9zM-LIiXFcUh-47P_YqnhvepF5k-KJc2dMQffX5LHzwufNuXI7bX-K7Q8fc9ZC-3N8_Xd-LhaXp_ffUgoq7NIIK5VLUBHaqaLOpZpWuQ1ACRt4RVkJUJsokqeKM0zhokFUKwSNY2MWpUh-xsu7vK6X1NZXDLtkTqOt9TWheHUmJtwWo1oqe_0Ne0zv34nZPGoLRSKvkfhXBZSQBTmZHCLRVzKiVT41a5Xfr8OUJuk8BtE7gxgdskcHp05NYpI9vPKf9c_kv6AscRhx0</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Kontoyiannis, I.</creator><creator>Meyn, S. P.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Geometric ergodicity and the spectral gap of non-reversible Markov chains</title><author>Kontoyiannis, I. ; Meyn, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-b6938604b58e714d54802ef0eea7e15b256b2fc3ba6341df1e3bbb71e77fcc413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chains</topic><topic>Economics</topic><topic>Ergodic processes</topic><topic>Finance</topic><topic>Hilbert space</topic><topic>Insurance</topic><topic>Liapunov functions</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Scholarships & fellowships</topic><topic>Spectra</topic><topic>Spectral theory</topic><topic>Spectrum analysis</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontoyiannis, I.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontoyiannis, I.</au><au>Meyn, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric ergodicity and the spectral gap of non-reversible Markov chains</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>154</volume><issue>1-2</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We argue that the spectral theory of non-reversible Markov chains may often be more effectively cast within the framework of the naturally associated weighted-
L
∞
space
, instead of the usual Hilbert space
L
2
=
L
2
(π), where π is the invariant measure of the chain. This observation is, in part, based on the following results. A discrete-time Markov chain with values in a general state space is geometrically ergodic if and only if its transition kernel admits a spectral gap in
. If the chain is reversible, the same equivalence holds with
L
2
in place of
. In the absence of reversibility it fails: There are (necessarily non-reversible, geometrically ergodic) chains that admit a spectral gap in
but not in
L
2
. Moreover, if a chain admits a spectral gap in
L
2
, then for any
there exists a Lyapunov function
such that
V
h
dominates
h
and the chain admits a spectral gap in
. The relationship between the size of the spectral gap in
or
L
2
, and the rate at which the chain converges to equilibrium is also briefly discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-011-0373-4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2012-10, Vol.154 (1-2), p.327-339 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221870743 |
source | SpringerLink; Business Source Complete |
subjects | Chains Economics Ergodic processes Finance Hilbert space Insurance Liapunov functions Management Markov analysis Markov chains Mathematical and Computational Biology Mathematical and Computational Physics Mathematical functions Mathematics Mathematics and Statistics Operations Research/Decision Theory Probability Probability theory Probability Theory and Stochastic Processes Quantitative Finance Scholarships & fellowships Spectra Spectral theory Spectrum analysis Statistics for Business Stochastic models Studies Theoretical |
title | Geometric ergodicity and the spectral gap of non-reversible Markov chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20ergodicity%20and%20the%20spectral%20gap%20of%20non-reversible%20Markov%20chains&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Kontoyiannis,%20I.&rft.date=2012-10-01&rft.volume=154&rft.issue=1-2&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-011-0373-4&rft_dat=%3Cproquest_cross%3E2782381021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095200656&rft_id=info:pmid/&rfr_iscdi=true |