TILT: Transform Invariant Low-Rank Textures
In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional l...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2012-08, Vol.99 (1), p.1-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of computer vision |
container_volume | 99 |
creator | Zhang, Zhengdong Ganesh, Arvind Liang, Xiao Ma, Yi |
description | In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional local features such as edges and corners as well as many kinds of regular, symmetric patterns ubiquitous in urban environments and man-made objects. Our approach to finding these low-rank textures leverages the recent breakthroughs in convex optimization that enable robust recovery of a high-dimensional low-rank matrix despite gross sparse errors. In the case of planar regions with significant affine or projective deformation, our method can accurately recover both the intrinsic low-rank texture and the unknown transformation, and hence both the geometry and appearance of the associated planar region in 3D. Extensive experimental results demonstrate that this new technique works effectively for many regular and near-regular patterns or objects that are approximately low-rank, such as symmetrical patterns, building facades, printed text, and human faces. |
doi_str_mv | 10.1007/s11263-012-0515-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221867329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365070749</galeid><sourcerecordid>A365070749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-bd6251533f4b7262e266a84c143e34e1ffba49208b2cfe6fd390782a1f67f1933</originalsourceid><addsrcrecordid>eNp1kV9r2zAUxcXoYGm3D7C3QCl0DKW6kvXHfQtl3QKBQuY9C1mRgltHTiW7Tb99FRxGOxh6EEi_czn3HIS-ApkBIfIqAVDBMAGKCQeO9x_QBLhkGArCT9CElJRgLkr4hE5TuieEUEXZBH2vFsvqelpFE5Lv4na6CE8mNib002X3jFcmPEwrt--H6NJn9NGbNrkvx_sM_bn9Ud38wsu7n4ub-RJbDqrH9VrQbIExX9SSCuqoEEYVFgrmWOHA-9oU2Y6qqfVO-DUriVTUgBfSQ8nYGboc5-5i9zi41Ottk6xrWxNcNyQNlIISktEyo-f_oPfdEEN2pyEnAiyvyTM1G6mNaZ1ugu_6aGw-a7dtbBecb_L7nAlOJJHFYey3d4LM9DmEjRlS0ovfq_csjKyNXUrReb2LzdbEFw1EH7rRYzc6d6MP3eh91lwcbZtkTetz-rZJf4WUK1UwqTJHRy7lr7Bx8c16_x3-CvD8mho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112130285</pqid></control><display><type>article</type><title>TILT: Transform Invariant Low-Rank Textures</title><source>SpringerLink Journals</source><creator>Zhang, Zhengdong ; Ganesh, Arvind ; Liang, Xiao ; Ma, Yi</creator><creatorcontrib>Zhang, Zhengdong ; Ganesh, Arvind ; Liang, Xiao ; Ma, Yi</creatorcontrib><description>In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional local features such as edges and corners as well as many kinds of regular, symmetric patterns ubiquitous in urban environments and man-made objects. Our approach to finding these low-rank textures leverages the recent breakthroughs in convex optimization that enable robust recovery of a high-dimensional low-rank matrix despite gross sparse errors. In the case of planar regions with significant affine or projective deformation, our method can accurately recover both the intrinsic low-rank texture and the unknown transformation, and hence both the geometry and appearance of the associated planar region in 3D. Extensive experimental results demonstrate that this new technique works effectively for many regular and near-regular patterns or objects that are approximately low-rank, such as symmetrical patterns, building facades, printed text, and human faces.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-012-0515-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applied sciences ; Artificial Intelligence ; Building facades ; Computer Imaging ; Computer Science ; Computer science; control theory; systems ; Computer vision ; Deformation ; Exact sciences and technology ; Image Processing and Computer Vision ; Image processing systems ; Invariants ; Pattern Recognition ; Pattern Recognition and Graphics ; Pattern recognition. Digital image processing. Computational geometry ; Studies ; Surface layer ; Symmetry ; Texture ; Three dimensional ; Transformations ; Urban environments ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2012-08, Vol.99 (1), p.1-24</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-bd6251533f4b7262e266a84c143e34e1ffba49208b2cfe6fd390782a1f67f1933</citedby><cites>FETCH-LOGICAL-c518t-bd6251533f4b7262e266a84c143e34e1ffba49208b2cfe6fd390782a1f67f1933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-012-0515-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-012-0515-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25884378$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Ganesh, Arvind</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><title>TILT: Transform Invariant Low-Rank Textures</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional local features such as edges and corners as well as many kinds of regular, symmetric patterns ubiquitous in urban environments and man-made objects. Our approach to finding these low-rank textures leverages the recent breakthroughs in convex optimization that enable robust recovery of a high-dimensional low-rank matrix despite gross sparse errors. In the case of planar regions with significant affine or projective deformation, our method can accurately recover both the intrinsic low-rank texture and the unknown transformation, and hence both the geometry and appearance of the associated planar region in 3D. Extensive experimental results demonstrate that this new technique works effectively for many regular and near-regular patterns or objects that are approximately low-rank, such as symmetrical patterns, building facades, printed text, and human faces.</description><subject>Analysis</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Building facades</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Image Processing and Computer Vision</subject><subject>Image processing systems</subject><subject>Invariants</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Symmetry</subject><subject>Texture</subject><subject>Three dimensional</subject><subject>Transformations</subject><subject>Urban environments</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV9r2zAUxcXoYGm3D7C3QCl0DKW6kvXHfQtl3QKBQuY9C1mRgltHTiW7Tb99FRxGOxh6EEi_czn3HIS-ApkBIfIqAVDBMAGKCQeO9x_QBLhkGArCT9CElJRgLkr4hE5TuieEUEXZBH2vFsvqelpFE5Lv4na6CE8mNib002X3jFcmPEwrt--H6NJn9NGbNrkvx_sM_bn9Ud38wsu7n4ub-RJbDqrH9VrQbIExX9SSCuqoEEYVFgrmWOHA-9oU2Y6qqfVO-DUriVTUgBfSQ8nYGboc5-5i9zi41Ottk6xrWxNcNyQNlIISktEyo-f_oPfdEEN2pyEnAiyvyTM1G6mNaZ1ugu_6aGw-a7dtbBecb_L7nAlOJJHFYey3d4LM9DmEjRlS0ovfq_csjKyNXUrReb2LzdbEFw1EH7rRYzc6d6MP3eh91lwcbZtkTetz-rZJf4WUK1UwqTJHRy7lr7Bx8c16_x3-CvD8mho</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Zhang, Zhengdong</creator><creator>Ganesh, Arvind</creator><creator>Liang, Xiao</creator><creator>Ma, Yi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120801</creationdate><title>TILT: Transform Invariant Low-Rank Textures</title><author>Zhang, Zhengdong ; Ganesh, Arvind ; Liang, Xiao ; Ma, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-bd6251533f4b7262e266a84c143e34e1ffba49208b2cfe6fd390782a1f67f1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Building facades</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Image Processing and Computer Vision</topic><topic>Image processing systems</topic><topic>Invariants</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Symmetry</topic><topic>Texture</topic><topic>Three dimensional</topic><topic>Transformations</topic><topic>Urban environments</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhengdong</creatorcontrib><creatorcontrib>Ganesh, Arvind</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><creatorcontrib>Ma, Yi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhengdong</au><au>Ganesh, Arvind</au><au>Liang, Xiao</au><au>Ma, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TILT: Transform Invariant Low-Rank Textures</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>99</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>In this paper, we propose a new tool to efficiently extract a class of “low-rank textures” in a 3D scene from user-specified windows in 2D images despite significant corruptions and warping. The low-rank textures capture geometrically meaningful structures in an image, which encompass conventional local features such as edges and corners as well as many kinds of regular, symmetric patterns ubiquitous in urban environments and man-made objects. Our approach to finding these low-rank textures leverages the recent breakthroughs in convex optimization that enable robust recovery of a high-dimensional low-rank matrix despite gross sparse errors. In the case of planar regions with significant affine or projective deformation, our method can accurately recover both the intrinsic low-rank texture and the unknown transformation, and hence both the geometry and appearance of the associated planar region in 3D. Extensive experimental results demonstrate that this new technique works effectively for many regular and near-regular patterns or objects that are approximately low-rank, such as symmetrical patterns, building facades, printed text, and human faces.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-012-0515-x</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2012-08, Vol.99 (1), p.1-24 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221867329 |
source | SpringerLink Journals |
subjects | Analysis Applied sciences Artificial Intelligence Building facades Computer Imaging Computer Science Computer science control theory systems Computer vision Deformation Exact sciences and technology Image Processing and Computer Vision Image processing systems Invariants Pattern Recognition Pattern Recognition and Graphics Pattern recognition. Digital image processing. Computational geometry Studies Surface layer Symmetry Texture Three dimensional Transformations Urban environments Vision Vision systems |
title | TILT: Transform Invariant Low-Rank Textures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TILT:%20Transform%20Invariant%20Low-Rank%20Textures&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Zhang,%20Zhengdong&rft.date=2012-08-01&rft.volume=99&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-012-0515-x&rft_dat=%3Cgale_proqu%3EA365070749%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112130285&rft_id=info:pmid/&rft_galeid=A365070749&rfr_iscdi=true |