Memorability of Visual Features in Network Diagrams

We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2012-12, Vol.18 (12), p.2477-2485
Hauptverfasser: Marriott, K., Purchase, H., Wybrow, M., Goncu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2485
container_issue 12
container_start_page 2477
container_title IEEE transactions on visualization and computer graphics
container_volume 18
creator Marriott, K.
Purchase, H.
Wybrow, M.
Goncu, C.
description We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.
doi_str_mv 10.1109/TVCG.2012.245
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221864703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327253</ieee_id><sourcerecordid>1711548327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</originalsourceid><addsrcrecordid>eNqFkDtPwzAQgC0EoqUwMiGhSCwsKT4_mxEVWpAKDFRdLcdxkEvSFDsR6r_HVUsHFobTnXSf7vEhdAl4CICzu_liPB0SDGRIGD9CfcgYpJhjcRxrLGVKBBE9dBbCEmNgbJSdoh4RlEvgoo_oi60br3NXuXaTNGWycKHTVTKxuu28DYlbJa-2_W78Z_Lg9IfXdThHJ6Wugr3Y5wF6nzzOx0_p7G36PL6fpYYBbVMrmSFGCqmLLBdYCExFIWLonJcFyzGnAIUWhkkMnAtphLFFXkJJM87pAN3upq5989XZ0KraBWOrSq9s0wUFEoCzESXyf5QQGIm4hkb05g-6bDq_im8oACCUZNs7ByjdUcY3IXhbqrV3tfYbBVhttautdrXVrqL2yF_vp3Z5bYsD_es5Alc7wFlrD20Rjyec0h_DU4Mo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112329660</pqid></control><display><type>article</type><title>Memorability of Visual Features in Network Diagrams</title><source>IEEE Electronic Library (IEL)</source><creator>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</creator><creatorcontrib>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</creatorcontrib><description>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.245</identifier><identifier>PMID: 26357156</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Alignment ; Collinearity ; diagram recall ; Educational institutions ; experiment ; graph layout ; Image edge detection ; Interactive ; Layout ; Network diagrams ; Networks ; Perception ; perceptual theories ; Recall ; Shape ; Tasks ; Topology ; Visual ; visual features ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2477-2485</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</citedby><cites>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marriott, K.</creatorcontrib><creatorcontrib>Purchase, H.</creatorcontrib><creatorcontrib>Wybrow, M.</creatorcontrib><creatorcontrib>Goncu, C.</creatorcontrib><title>Memorability of Visual Features in Network Diagrams</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</description><subject>Algorithm design and analysis</subject><subject>Alignment</subject><subject>Collinearity</subject><subject>diagram recall</subject><subject>Educational institutions</subject><subject>experiment</subject><subject>graph layout</subject><subject>Image edge detection</subject><subject>Interactive</subject><subject>Layout</subject><subject>Network diagrams</subject><subject>Networks</subject><subject>Perception</subject><subject>perceptual theories</subject><subject>Recall</subject><subject>Shape</subject><subject>Tasks</subject><subject>Topology</subject><subject>Visual</subject><subject>visual features</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkDtPwzAQgC0EoqUwMiGhSCwsKT4_mxEVWpAKDFRdLcdxkEvSFDsR6r_HVUsHFobTnXSf7vEhdAl4CICzu_liPB0SDGRIGD9CfcgYpJhjcRxrLGVKBBE9dBbCEmNgbJSdoh4RlEvgoo_oi60br3NXuXaTNGWycKHTVTKxuu28DYlbJa-2_W78Z_Lg9IfXdThHJ6Wugr3Y5wF6nzzOx0_p7G36PL6fpYYBbVMrmSFGCqmLLBdYCExFIWLonJcFyzGnAIUWhkkMnAtphLFFXkJJM87pAN3upq5989XZ0KraBWOrSq9s0wUFEoCzESXyf5QQGIm4hkb05g-6bDq_im8oACCUZNs7ByjdUcY3IXhbqrV3tfYbBVhttautdrXVrqL2yF_vp3Z5bYsD_es5Alc7wFlrD20Rjyec0h_DU4Mo</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Marriott, K.</creator><creator>Purchase, H.</creator><creator>Wybrow, M.</creator><creator>Goncu, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20121201</creationdate><title>Memorability of Visual Features in Network Diagrams</title><author>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Alignment</topic><topic>Collinearity</topic><topic>diagram recall</topic><topic>Educational institutions</topic><topic>experiment</topic><topic>graph layout</topic><topic>Image edge detection</topic><topic>Interactive</topic><topic>Layout</topic><topic>Network diagrams</topic><topic>Networks</topic><topic>Perception</topic><topic>perceptual theories</topic><topic>Recall</topic><topic>Shape</topic><topic>Tasks</topic><topic>Topology</topic><topic>Visual</topic><topic>visual features</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marriott, K.</creatorcontrib><creatorcontrib>Purchase, H.</creatorcontrib><creatorcontrib>Wybrow, M.</creatorcontrib><creatorcontrib>Goncu, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marriott, K.</au><au>Purchase, H.</au><au>Wybrow, M.</au><au>Goncu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memorability of Visual Features in Network Diagrams</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>18</volume><issue>12</issue><spage>2477</spage><epage>2485</epage><pages>2477-2485</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357156</pmid><doi>10.1109/TVCG.2012.245</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2477-2485
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1221864703
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Alignment
Collinearity
diagram recall
Educational institutions
experiment
graph layout
Image edge detection
Interactive
Layout
Network diagrams
Networks
Perception
perceptual theories
Recall
Shape
Tasks
Topology
Visual
visual features
Visualization
title Memorability of Visual Features in Network Diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memorability%20of%20Visual%20Features%20in%20Network%20Diagrams&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Marriott,%20K.&rft.date=2012-12-01&rft.volume=18&rft.issue=12&rft.spage=2477&rft.epage=2485&rft.pages=2477-2485&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.245&rft_dat=%3Cproquest_RIE%3E1711548327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112329660&rft_id=info:pmid/26357156&rft_ieee_id=6327253&rfr_iscdi=true