Memorability of Visual Features in Network Diagrams
We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised whe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2012-12, Vol.18 (12), p.2477-2485 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2485 |
---|---|
container_issue | 12 |
container_start_page | 2477 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 18 |
creator | Marriott, K. Purchase, H. Wybrow, M. Goncu, C. |
description | We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges. |
doi_str_mv | 10.1109/TVCG.2012.245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221864703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327253</ieee_id><sourcerecordid>1711548327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</originalsourceid><addsrcrecordid>eNqFkDtPwzAQgC0EoqUwMiGhSCwsKT4_mxEVWpAKDFRdLcdxkEvSFDsR6r_HVUsHFobTnXSf7vEhdAl4CICzu_liPB0SDGRIGD9CfcgYpJhjcRxrLGVKBBE9dBbCEmNgbJSdoh4RlEvgoo_oi60br3NXuXaTNGWycKHTVTKxuu28DYlbJa-2_W78Z_Lg9IfXdThHJ6Wugr3Y5wF6nzzOx0_p7G36PL6fpYYBbVMrmSFGCqmLLBdYCExFIWLonJcFyzGnAIUWhkkMnAtphLFFXkJJM87pAN3upq5989XZ0KraBWOrSq9s0wUFEoCzESXyf5QQGIm4hkb05g-6bDq_im8oACCUZNs7ByjdUcY3IXhbqrV3tfYbBVhttautdrXVrqL2yF_vp3Z5bYsD_es5Alc7wFlrD20Rjyec0h_DU4Mo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112329660</pqid></control><display><type>article</type><title>Memorability of Visual Features in Network Diagrams</title><source>IEEE Electronic Library (IEL)</source><creator>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</creator><creatorcontrib>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</creatorcontrib><description>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2012.245</identifier><identifier>PMID: 26357156</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Alignment ; Collinearity ; diagram recall ; Educational institutions ; experiment ; graph layout ; Image edge detection ; Interactive ; Layout ; Network diagrams ; Networks ; Perception ; perceptual theories ; Recall ; Shape ; Tasks ; Topology ; Visual ; visual features ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2477-2485</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</citedby><cites>FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marriott, K.</creatorcontrib><creatorcontrib>Purchase, H.</creatorcontrib><creatorcontrib>Wybrow, M.</creatorcontrib><creatorcontrib>Goncu, C.</creatorcontrib><title>Memorability of Visual Features in Network Diagrams</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</description><subject>Algorithm design and analysis</subject><subject>Alignment</subject><subject>Collinearity</subject><subject>diagram recall</subject><subject>Educational institutions</subject><subject>experiment</subject><subject>graph layout</subject><subject>Image edge detection</subject><subject>Interactive</subject><subject>Layout</subject><subject>Network diagrams</subject><subject>Networks</subject><subject>Perception</subject><subject>perceptual theories</subject><subject>Recall</subject><subject>Shape</subject><subject>Tasks</subject><subject>Topology</subject><subject>Visual</subject><subject>visual features</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkDtPwzAQgC0EoqUwMiGhSCwsKT4_mxEVWpAKDFRdLcdxkEvSFDsR6r_HVUsHFobTnXSf7vEhdAl4CICzu_liPB0SDGRIGD9CfcgYpJhjcRxrLGVKBBE9dBbCEmNgbJSdoh4RlEvgoo_oi60br3NXuXaTNGWycKHTVTKxuu28DYlbJa-2_W78Z_Lg9IfXdThHJ6Wugr3Y5wF6nzzOx0_p7G36PL6fpYYBbVMrmSFGCqmLLBdYCExFIWLonJcFyzGnAIUWhkkMnAtphLFFXkJJM87pAN3upq5989XZ0KraBWOrSq9s0wUFEoCzESXyf5QQGIm4hkb05g-6bDq_im8oACCUZNs7ByjdUcY3IXhbqrV3tfYbBVhttautdrXVrqL2yF_vp3Z5bYsD_es5Alc7wFlrD20Rjyec0h_DU4Mo</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Marriott, K.</creator><creator>Purchase, H.</creator><creator>Wybrow, M.</creator><creator>Goncu, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20121201</creationdate><title>Memorability of Visual Features in Network Diagrams</title><author>Marriott, K. ; Purchase, H. ; Wybrow, M. ; Goncu, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-e74c2c767ad9b6066036d636dab5fd4b05311da6c47015567c6cedbf1f39553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Alignment</topic><topic>Collinearity</topic><topic>diagram recall</topic><topic>Educational institutions</topic><topic>experiment</topic><topic>graph layout</topic><topic>Image edge detection</topic><topic>Interactive</topic><topic>Layout</topic><topic>Network diagrams</topic><topic>Networks</topic><topic>Perception</topic><topic>perceptual theories</topic><topic>Recall</topic><topic>Shape</topic><topic>Tasks</topic><topic>Topology</topic><topic>Visual</topic><topic>visual features</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marriott, K.</creatorcontrib><creatorcontrib>Purchase, H.</creatorcontrib><creatorcontrib>Wybrow, M.</creatorcontrib><creatorcontrib>Goncu, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marriott, K.</au><au>Purchase, H.</au><au>Wybrow, M.</au><au>Goncu, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memorability of Visual Features in Network Diagrams</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>18</volume><issue>12</issue><spage>2477</spage><epage>2485</epage><pages>2477-2485</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We investigate the cognitive impact of various layout features-symmetry, alignment, collinearity, axis alignment and orthogonality - on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what features should or shouldn't be utilised when designing static and interactive network-based visualisations. Participants were asked to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant impact for node-alignment or parallel edges.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357156</pmid><doi>10.1109/TVCG.2012.245</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2012-12, Vol.18 (12), p.2477-2485 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221864703 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Alignment Collinearity diagram recall Educational institutions experiment graph layout Image edge detection Interactive Layout Network diagrams Networks Perception perceptual theories Recall Shape Tasks Topology Visual visual features Visualization |
title | Memorability of Visual Features in Network Diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memorability%20of%20Visual%20Features%20in%20Network%20Diagrams&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Marriott,%20K.&rft.date=2012-12-01&rft.volume=18&rft.issue=12&rft.spage=2477&rft.epage=2485&rft.pages=2477-2485&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2012.245&rft_dat=%3Cproquest_RIE%3E1711548327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112329660&rft_id=info:pmid/26357156&rft_ieee_id=6327253&rfr_iscdi=true |