Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume
[Display omitted] ► We propose a graph cut algorithm that can take into account the multiple shapes. ► We propose novel energy terms to introduce priors on neighboring structures. ► We performed experiments using a synthetic image and 97 clinical CT volumes. ► The multi-shape graph cuts with all nei...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2013-01, Vol.17 (1), p.62-77 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Medical image analysis |
container_volume | 17 |
creator | Nakagomi, Keita Shimizu, Akinobu Kobatake, Hidefumi Yakami, Masahiro Fujimoto, Koji Togashi, Kaori |
description | [Display omitted]
► We propose a graph cut algorithm that can take into account the multiple shapes. ► We propose novel energy terms to introduce priors on neighboring structures. ► We performed experiments using a synthetic image and 97 clinical CT volumes. ► The multi-shape graph cuts with all neighbor constraints and adaptive weight gave the best performance.
This paper presents a novel graph cut algorithm that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensional computed tomography (CT) image based on this algorithm. The major contribution of this paper is the proposal of a novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbor structures in a graph cut framework. We demonstrate the efficacy of the proposed algorithm by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes. |
doi_str_mv | 10.1016/j.media.2012.08.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221850297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841512001090</els_id><sourcerecordid>1221850297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2cd6fe9f3b72b97cf50d95506d21476884678b550ac08e704854f0a2b2d88e8e3</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi1UBJTyC5CQj70kHTtfzoEDWhWKRMWFni3HmWy8SuzUdhb139fLUo69zIxm3vl6CLlmkDNg9bddPmNvVM6B8RxEDsBPyAUrapaJkhefPmJWnZPPIewAoClLOCPnvICat1VxQfY_1ymaLIxqQbr1ahmpXmOgryaO1KLZjp3zdPEmWe1siF4Zm-rK9tQc_LJMRqtonKXR0Wm1WxpwO6ONx-Tg3UwV1SOGSDcvdO-mdcYv5HRQU8Crd39Jft1_f9n8yJ6eHx43d0-ZLqo2Zlz39YDtUHQN79pGDxX0bVVB3XNWNrUQZd2ILiWUBoENlKIqB1C8470QKLC4JF-Pcxfvfq_pBDmboHGalEW3Bsk4Z6IC3jZJWhyl2rsQPA4yfT0r_0cykAfgciffgMsDcAlCJuCp6-Z9wdql6kfPP8JJcHsUYHpzb9DLoA1anSZ51FH2zvx3wV9nMpOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221850297</pqid></control><display><type>article</type><title>Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Nakagomi, Keita ; Shimizu, Akinobu ; Kobatake, Hidefumi ; Yakami, Masahiro ; Fujimoto, Koji ; Togashi, Kaori</creator><creatorcontrib>Nakagomi, Keita ; Shimizu, Akinobu ; Kobatake, Hidefumi ; Yakami, Masahiro ; Fujimoto, Koji ; Togashi, Kaori</creatorcontrib><description>[Display omitted]
► We propose a graph cut algorithm that can take into account the multiple shapes. ► We propose novel energy terms to introduce priors on neighboring structures. ► We performed experiments using a synthetic image and 97 clinical CT volumes. ► The multi-shape graph cuts with all neighbor constraints and adaptive weight gave the best performance.
This paper presents a novel graph cut algorithm that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensional computed tomography (CT) image based on this algorithm. The major contribution of this paper is the proposal of a novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbor structures in a graph cut framework. We demonstrate the efficacy of the proposed algorithm by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2012.08.002</identifier><identifier>PMID: 23062953</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; CT image ; Graph cuts ; Humans ; Imaging, Three-Dimensional - methods ; Lung - anatomy & histology ; Lung - diagnostic imaging ; Lung segmentation ; Multi-shape ; Neighbor constraint ; Organ Size ; Radiography, Thoracic - methods ; Tomography, X-Ray Computed - methods</subject><ispartof>Medical image analysis, 2013-01, Vol.17 (1), p.62-77</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2cd6fe9f3b72b97cf50d95506d21476884678b550ac08e704854f0a2b2d88e8e3</citedby><cites>FETCH-LOGICAL-c359t-2cd6fe9f3b72b97cf50d95506d21476884678b550ac08e704854f0a2b2d88e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841512001090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23062953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakagomi, Keita</creatorcontrib><creatorcontrib>Shimizu, Akinobu</creatorcontrib><creatorcontrib>Kobatake, Hidefumi</creatorcontrib><creatorcontrib>Yakami, Masahiro</creatorcontrib><creatorcontrib>Fujimoto, Koji</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><title>Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>[Display omitted]
► We propose a graph cut algorithm that can take into account the multiple shapes. ► We propose novel energy terms to introduce priors on neighboring structures. ► We performed experiments using a synthetic image and 97 clinical CT volumes. ► The multi-shape graph cuts with all neighbor constraints and adaptive weight gave the best performance.
This paper presents a novel graph cut algorithm that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensional computed tomography (CT) image based on this algorithm. The major contribution of this paper is the proposal of a novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbor structures in a graph cut framework. We demonstrate the efficacy of the proposed algorithm by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes.</description><subject>Algorithms</subject><subject>CT image</subject><subject>Graph cuts</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Lung - anatomy & histology</subject><subject>Lung - diagnostic imaging</subject><subject>Lung segmentation</subject><subject>Multi-shape</subject><subject>Neighbor constraint</subject><subject>Organ Size</subject><subject>Radiography, Thoracic - methods</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi1UBJTyC5CQj70kHTtfzoEDWhWKRMWFni3HmWy8SuzUdhb139fLUo69zIxm3vl6CLlmkDNg9bddPmNvVM6B8RxEDsBPyAUrapaJkhefPmJWnZPPIewAoClLOCPnvICat1VxQfY_1ymaLIxqQbr1ahmpXmOgryaO1KLZjp3zdPEmWe1siF4Zm-rK9tQc_LJMRqtonKXR0Wm1WxpwO6ONx-Tg3UwV1SOGSDcvdO-mdcYv5HRQU8Crd39Jft1_f9n8yJ6eHx43d0-ZLqo2Zlz39YDtUHQN79pGDxX0bVVB3XNWNrUQZd2ILiWUBoENlKIqB1C8470QKLC4JF-Pcxfvfq_pBDmboHGalEW3Bsk4Z6IC3jZJWhyl2rsQPA4yfT0r_0cykAfgciffgMsDcAlCJuCp6-Z9wdql6kfPP8JJcHsUYHpzb9DLoA1anSZ51FH2zvx3wV9nMpOM</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Nakagomi, Keita</creator><creator>Shimizu, Akinobu</creator><creator>Kobatake, Hidefumi</creator><creator>Yakami, Masahiro</creator><creator>Fujimoto, Koji</creator><creator>Togashi, Kaori</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201301</creationdate><title>Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume</title><author>Nakagomi, Keita ; Shimizu, Akinobu ; Kobatake, Hidefumi ; Yakami, Masahiro ; Fujimoto, Koji ; Togashi, Kaori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2cd6fe9f3b72b97cf50d95506d21476884678b550ac08e704854f0a2b2d88e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>CT image</topic><topic>Graph cuts</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Lung - anatomy & histology</topic><topic>Lung - diagnostic imaging</topic><topic>Lung segmentation</topic><topic>Multi-shape</topic><topic>Neighbor constraint</topic><topic>Organ Size</topic><topic>Radiography, Thoracic - methods</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakagomi, Keita</creatorcontrib><creatorcontrib>Shimizu, Akinobu</creatorcontrib><creatorcontrib>Kobatake, Hidefumi</creatorcontrib><creatorcontrib>Yakami, Masahiro</creatorcontrib><creatorcontrib>Fujimoto, Koji</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakagomi, Keita</au><au>Shimizu, Akinobu</au><au>Kobatake, Hidefumi</au><au>Yakami, Masahiro</au><au>Fujimoto, Koji</au><au>Togashi, Kaori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2013-01</date><risdate>2013</risdate><volume>17</volume><issue>1</issue><spage>62</spage><epage>77</epage><pages>62-77</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>[Display omitted]
► We propose a graph cut algorithm that can take into account the multiple shapes. ► We propose novel energy terms to introduce priors on neighboring structures. ► We performed experiments using a synthetic image and 97 clinical CT volumes. ► The multi-shape graph cuts with all neighbor constraints and adaptive weight gave the best performance.
This paper presents a novel graph cut algorithm that can take into account multi-shape constraints with neighbor prior constraints, and reports on a lung segmentation process from a three-dimensional computed tomography (CT) image based on this algorithm. The major contribution of this paper is the proposal of a novel segmentation algorithm that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbor structures in a graph cut framework. We demonstrate the efficacy of the proposed algorithm by comparing it to conventional one using a synthetic image and clinical thoracic CT volumes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23062953</pmid><doi>10.1016/j.media.2012.08.002</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2013-01, Vol.17 (1), p.62-77 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221850297 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms CT image Graph cuts Humans Imaging, Three-Dimensional - methods Lung - anatomy & histology Lung - diagnostic imaging Lung segmentation Multi-shape Neighbor constraint Organ Size Radiography, Thoracic - methods Tomography, X-Ray Computed - methods |
title | Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-shape%20graph%20cuts%20with%20neighbor%20prior%20constraints%20and%20its%20application%20to%20lung%20segmentation%20from%20a%20chest%20CT%20volume&rft.jtitle=Medical%20image%20analysis&rft.au=Nakagomi,%20Keita&rft.date=2013-01&rft.volume=17&rft.issue=1&rft.spage=62&rft.epage=77&rft.pages=62-77&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2012.08.002&rft_dat=%3Cproquest_cross%3E1221850297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221850297&rft_id=info:pmid/23062953&rft_els_id=S1361841512001090&rfr_iscdi=true |