Probabilistic Foundation of Confirmatory Adaptive Designs
Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted w...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2012-06, Vol.107 (498), p.824-832 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 498 |
container_start_page | 824 |
container_title | Journal of the American Statistical Association |
container_volume | 107 |
creator | Brannath, W Gutjahr, G Bauer, P |
description | Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary. |
doi_str_mv | 10.1080/01621459.2012.682540 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221847049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23239614</jstor_id><sourcerecordid>23239614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</originalsourceid><addsrcrecordid>eNqFkU9LwzAchoMoOKffQLHgxctm_jbNScZ0KgwUdOAtpGkyMrpmJq2yb29GVcSLuSTwe9434QkApwiOESzgFUQ5RpSJMYYIj_MCMwr3wAAxwkeY09f9X-dDcBTjCqbFi2IAxFPwpSpd7WLrdDbzXVOp1vkm8zab-sa6sFatD9tsUqlN695NdmOiWzbxGBxYVUdz8rUPwWJ2-zK9H80f7x6mk_lIU8rbka5KaKGxQhvIKku5gIZqoZU22lhOjWW0MLgUzDKjlLCkJLSsKoN5zjkryRBc9r2b4N86E1u5dlGbulaN8V2UCGNUUA6pSOjFH3Tlu9Ck10kECcsRFDlKFO0pHXyMwVi5CW6twjZBcudTfvuUO5-y95liZ31sFZOPnwwmmKRWmubX_dw11idpHz7UlWzVtvbBBtVoFyX554bzvsEqL9UypMDiOQF5-qyCEYHIJ9LWj00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035610961</pqid></control><display><type>article</type><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><source>Taylor & Francis Journals Complete</source><source>JSTOR</source><creator>Brannath, W ; Gutjahr, G ; Bauer, P</creator><creatorcontrib>Brannath, W ; Gutjahr, G ; Bauer, P</creatorcontrib><description>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.682540</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis Group</publisher><subject>Adaptation ; Clinical trials ; Combination test ; Conditional error function ; Conditional power ; Conditional probabilities ; Conditional rejection probability ; Confirmatory clinical trial ; Counterexamples ; Design ; Design analysis ; Distribution ; Distribution functions ; Drug design ; Error rates ; Mathematical analysis ; prices ; Probabilities ; Probability ; Regression analysis ; Sample size ; Sample size reassessment ; Statistical models ; Statistics ; Test design ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2012-06, Vol.107 (498), p.824-832</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright © 2012 American Statistical Association</rights><rights>Copyright American Statistical Association Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</citedby><cites>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23239614$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23239614$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids></links><search><creatorcontrib>Brannath, W</creatorcontrib><creatorcontrib>Gutjahr, G</creatorcontrib><creatorcontrib>Bauer, P</creatorcontrib><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><title>Journal of the American Statistical Association</title><description>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</description><subject>Adaptation</subject><subject>Clinical trials</subject><subject>Combination test</subject><subject>Conditional error function</subject><subject>Conditional power</subject><subject>Conditional probabilities</subject><subject>Conditional rejection probability</subject><subject>Confirmatory clinical trial</subject><subject>Counterexamples</subject><subject>Design</subject><subject>Design analysis</subject><subject>Distribution</subject><subject>Distribution functions</subject><subject>Drug design</subject><subject>Error rates</subject><subject>Mathematical analysis</subject><subject>prices</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sample size reassessment</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Test design</subject><subject>Theory and Methods</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAchoMoOKffQLHgxctm_jbNScZ0KgwUdOAtpGkyMrpmJq2yb29GVcSLuSTwe9434QkApwiOESzgFUQ5RpSJMYYIj_MCMwr3wAAxwkeY09f9X-dDcBTjCqbFi2IAxFPwpSpd7WLrdDbzXVOp1vkm8zab-sa6sFatD9tsUqlN695NdmOiWzbxGBxYVUdz8rUPwWJ2-zK9H80f7x6mk_lIU8rbka5KaKGxQhvIKku5gIZqoZU22lhOjWW0MLgUzDKjlLCkJLSsKoN5zjkryRBc9r2b4N86E1u5dlGbulaN8V2UCGNUUA6pSOjFH3Tlu9Ck10kECcsRFDlKFO0pHXyMwVi5CW6twjZBcudTfvuUO5-y95liZ31sFZOPnwwmmKRWmubX_dw11idpHz7UlWzVtvbBBtVoFyX554bzvsEqL9UypMDiOQF5-qyCEYHIJ9LWj00</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Brannath, W</creator><creator>Gutjahr, G</creator><creator>Bauer, P</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20120601</creationdate><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><author>Brannath, W ; Gutjahr, G ; Bauer, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation</topic><topic>Clinical trials</topic><topic>Combination test</topic><topic>Conditional error function</topic><topic>Conditional power</topic><topic>Conditional probabilities</topic><topic>Conditional rejection probability</topic><topic>Confirmatory clinical trial</topic><topic>Counterexamples</topic><topic>Design</topic><topic>Design analysis</topic><topic>Distribution</topic><topic>Distribution functions</topic><topic>Drug design</topic><topic>Error rates</topic><topic>Mathematical analysis</topic><topic>prices</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sample size reassessment</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Test design</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brannath, W</creatorcontrib><creatorcontrib>Gutjahr, G</creatorcontrib><creatorcontrib>Bauer, P</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brannath, W</au><au>Gutjahr, G</au><au>Bauer, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Foundation of Confirmatory Adaptive Designs</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>107</volume><issue>498</issue><spage>824</spage><epage>832</epage><pages>824-832</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</abstract><cop>Alexandria</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.2012.682540</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-274X |
ispartof | Journal of the American Statistical Association, 2012-06, Vol.107 (498), p.824-832 |
issn | 1537-274X 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_miscellaneous_1221847049 |
source | Taylor & Francis Journals Complete; JSTOR |
subjects | Adaptation Clinical trials Combination test Conditional error function Conditional power Conditional probabilities Conditional rejection probability Confirmatory clinical trial Counterexamples Design Design analysis Distribution Distribution functions Drug design Error rates Mathematical analysis prices Probabilities Probability Regression analysis Sample size Sample size reassessment Statistical models Statistics Test design Theory and Methods |
title | Probabilistic Foundation of Confirmatory Adaptive Designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Foundation%20of%20Confirmatory%20Adaptive%20Designs&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Brannath,%20W&rft.date=2012-06-01&rft.volume=107&rft.issue=498&rft.spage=824&rft.epage=832&rft.pages=824-832&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2012.682540&rft_dat=%3Cjstor_proqu%3E23239614%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035610961&rft_id=info:pmid/&rft_jstor_id=23239614&rfr_iscdi=true |