Probabilistic Foundation of Confirmatory Adaptive Designs

Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2012-06, Vol.107 (498), p.824-832
Hauptverfasser: Brannath, W, Gutjahr, G, Bauer, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 498
container_start_page 824
container_title Journal of the American Statistical Association
container_volume 107
creator Brannath, W
Gutjahr, G
Bauer, P
description Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.
doi_str_mv 10.1080/01621459.2012.682540
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221847049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23239614</jstor_id><sourcerecordid>23239614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</originalsourceid><addsrcrecordid>eNqFkU9LwzAchoMoOKffQLHgxctm_jbNScZ0KgwUdOAtpGkyMrpmJq2yb29GVcSLuSTwe9434QkApwiOESzgFUQ5RpSJMYYIj_MCMwr3wAAxwkeY09f9X-dDcBTjCqbFi2IAxFPwpSpd7WLrdDbzXVOp1vkm8zab-sa6sFatD9tsUqlN695NdmOiWzbxGBxYVUdz8rUPwWJ2-zK9H80f7x6mk_lIU8rbka5KaKGxQhvIKku5gIZqoZU22lhOjWW0MLgUzDKjlLCkJLSsKoN5zjkryRBc9r2b4N86E1u5dlGbulaN8V2UCGNUUA6pSOjFH3Tlu9Ck10kECcsRFDlKFO0pHXyMwVi5CW6twjZBcudTfvuUO5-y95liZ31sFZOPnwwmmKRWmubX_dw11idpHz7UlWzVtvbBBtVoFyX554bzvsEqL9UypMDiOQF5-qyCEYHIJ9LWj00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1035610961</pqid></control><display><type>article</type><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><source>Taylor &amp; Francis Journals Complete</source><source>JSTOR</source><creator>Brannath, W ; Gutjahr, G ; Bauer, P</creator><creatorcontrib>Brannath, W ; Gutjahr, G ; Bauer, P</creatorcontrib><description>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.682540</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis Group</publisher><subject>Adaptation ; Clinical trials ; Combination test ; Conditional error function ; Conditional power ; Conditional probabilities ; Conditional rejection probability ; Confirmatory clinical trial ; Counterexamples ; Design ; Design analysis ; Distribution ; Distribution functions ; Drug design ; Error rates ; Mathematical analysis ; prices ; Probabilities ; Probability ; Regression analysis ; Sample size ; Sample size reassessment ; Statistical models ; Statistics ; Test design ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2012-06, Vol.107 (498), p.824-832</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright © 2012 American Statistical Association</rights><rights>Copyright American Statistical Association Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</citedby><cites>FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23239614$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23239614$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,27905,27906,57998,58002,58231,58235,59626,60415</link.rule.ids></links><search><creatorcontrib>Brannath, W</creatorcontrib><creatorcontrib>Gutjahr, G</creatorcontrib><creatorcontrib>Bauer, P</creatorcontrib><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><title>Journal of the American Statistical Association</title><description>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</description><subject>Adaptation</subject><subject>Clinical trials</subject><subject>Combination test</subject><subject>Conditional error function</subject><subject>Conditional power</subject><subject>Conditional probabilities</subject><subject>Conditional rejection probability</subject><subject>Confirmatory clinical trial</subject><subject>Counterexamples</subject><subject>Design</subject><subject>Design analysis</subject><subject>Distribution</subject><subject>Distribution functions</subject><subject>Drug design</subject><subject>Error rates</subject><subject>Mathematical analysis</subject><subject>prices</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sample size reassessment</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Test design</subject><subject>Theory and Methods</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAchoMoOKffQLHgxctm_jbNScZ0KgwUdOAtpGkyMrpmJq2yb29GVcSLuSTwe9434QkApwiOESzgFUQ5RpSJMYYIj_MCMwr3wAAxwkeY09f9X-dDcBTjCqbFi2IAxFPwpSpd7WLrdDbzXVOp1vkm8zab-sa6sFatD9tsUqlN695NdmOiWzbxGBxYVUdz8rUPwWJ2-zK9H80f7x6mk_lIU8rbka5KaKGxQhvIKku5gIZqoZU22lhOjWW0MLgUzDKjlLCkJLSsKoN5zjkryRBc9r2b4N86E1u5dlGbulaN8V2UCGNUUA6pSOjFH3Tlu9Ck10kECcsRFDlKFO0pHXyMwVi5CW6twjZBcudTfvuUO5-y95liZ31sFZOPnwwmmKRWmubX_dw11idpHz7UlWzVtvbBBtVoFyX554bzvsEqL9UypMDiOQF5-qyCEYHIJ9LWj00</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Brannath, W</creator><creator>Gutjahr, G</creator><creator>Bauer, P</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20120601</creationdate><title>Probabilistic Foundation of Confirmatory Adaptive Designs</title><author>Brannath, W ; Gutjahr, G ; Bauer, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-cdb0f0ef9ce05df4790e4c9cacecef74ef548e2b95f5eaa9f3b34bdde276775b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation</topic><topic>Clinical trials</topic><topic>Combination test</topic><topic>Conditional error function</topic><topic>Conditional power</topic><topic>Conditional probabilities</topic><topic>Conditional rejection probability</topic><topic>Confirmatory clinical trial</topic><topic>Counterexamples</topic><topic>Design</topic><topic>Design analysis</topic><topic>Distribution</topic><topic>Distribution functions</topic><topic>Drug design</topic><topic>Error rates</topic><topic>Mathematical analysis</topic><topic>prices</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sample size reassessment</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Test design</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brannath, W</creatorcontrib><creatorcontrib>Gutjahr, G</creatorcontrib><creatorcontrib>Bauer, P</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brannath, W</au><au>Gutjahr, G</au><au>Bauer, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Foundation of Confirmatory Adaptive Designs</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>107</volume><issue>498</issue><spage>824</spage><epage>832</epage><pages>824-832</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Adaptive designs allow the investigator of a confirmatory trial to react to unforeseen developments by changing the design. This broad flexibility comes at the price of a complex statistical model where important components, such as the adaptation rule, remain unspecified. It has thus been doubted whether Type I error control can be guaranteed in general adaptive designs. This criticism is fully justified as long as the probabilistic framework on which an adaptive design is based remains vague and implicit. Therefore, an indispensable step lies in the clarification of the probabilistic fundamentals of adaptive testing. We demonstrate that the two main principles of adaptive designs, namely the conditional Type I error rate and the conditional invariance principle, will provide Type I error rate control, if the conditional distribution of the second-stage data, given the first-stage data, can be described in terms of a regression model. A similar assumption is required for regression analysis where the distribution of the covariates is a nuisance parameter and the model needs to be identifiable independently from the covariate distribution. We further show that under the assumption of a regression model, the events of an arbitrary adaptive design can be embedded into a formal probability space without the need of posing any restrictions on the adaptation rule. As a consequence of our results, artificial constraints that had to be imposed on the investigator only for mathematical tractability of the model are no longer necessary.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.2012.682540</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2012-06, Vol.107 (498), p.824-832
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_proquest_miscellaneous_1221847049
source Taylor & Francis Journals Complete; JSTOR
subjects Adaptation
Clinical trials
Combination test
Conditional error function
Conditional power
Conditional probabilities
Conditional rejection probability
Confirmatory clinical trial
Counterexamples
Design
Design analysis
Distribution
Distribution functions
Drug design
Error rates
Mathematical analysis
prices
Probabilities
Probability
Regression analysis
Sample size
Sample size reassessment
Statistical models
Statistics
Test design
Theory and Methods
title Probabilistic Foundation of Confirmatory Adaptive Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Foundation%20of%20Confirmatory%20Adaptive%20Designs&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Brannath,%20W&rft.date=2012-06-01&rft.volume=107&rft.issue=498&rft.spage=824&rft.epage=832&rft.pages=824-832&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2012.682540&rft_dat=%3Cjstor_proqu%3E23239614%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1035610961&rft_id=info:pmid/&rft_jstor_id=23239614&rfr_iscdi=true