An evidence-based score to detect prevalent peripheral artery disease (PAD)

Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vascular Medicine 2012-10, Vol.17 (5), p.342-351
Hauptverfasser: Duval, Sue, Massaro, Joseph M, Jaff, Michael R, Boden, William E, Alberts, Mark J, Califf, Robert M, Eagle, Kim A, D’Agostino, Ralph B, Pedley, Alison, Fonarow, Gregg C, Murabito, Joanne M, Steg, P Gabriel, Bhatt, Deepak L, Hirsch, Alan T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 5
container_start_page 342
container_title Vascular Medicine
container_volume 17
creator Duval, Sue
Massaro, Joseph M
Jaff, Michael R
Boden, William E
Alberts, Mark J
Califf, Robert M
Eagle, Kim A
D’Agostino, Ralph B
Pedley, Alison
Fonarow, Gregg C
Murabito, Joanne M
Steg, P Gabriel
Bhatt, Deepak L
Hirsch, Alan T
description Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimating PAD probability in individuals or populations. PAD presence was determined by a history of previous or current intermittent claudication associated with an ankle–brachial index (ABI) of < 0.9 or previous lower extremity arterial intervention. Multivariable stepwise logistic regression identified cross-sectional correlates of PAD from demographic, clinical, and laboratory variables. Analyses were derived from 18,049 US REACH (REduction of Atherothrombosis for Continued Health) Registry outpatients with a complete baseline risk factor profile (enrolled from December 2003 to June 2004). Model performance was assessed internally using 10-fold cross validation, and effect estimates were used to generate the score. The model was externally validated using the Framingham Offspring Study. Age, sex, smoking, diabetes mellitus, body mass index, hypertension stage, and history of heart failure, coronary artery disease, and cerebrovascular disease were predictive of PAD prevalence. The model had reasonable discrimination on derivation and internal validation (c-statistic = 0.61 and 0.60, respectively) and external validation (c-statistic = 0.63 [ABI < 0.9] or 0.64 [clinical PAD]). The model-estimated PAD prevalence varied more than threefold from lowest to highest decile (range, 4.5–16.7) and corresponded closely with actual PAD prevalence in each population. In conclusion, this new tool uses clinical variables to estimate PAD prevalence. While predictive power may be limited, it may improve PAD detection in vulnerable, at-risk populations.
doi_str_mv 10.1177/1358863X12445102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221136639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1358863X12445102</sage_id><sourcerecordid>1221136639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-73cf53db43f2fa07223cd6312fa6512b63a35fccfc2c1ab2086da3b95b4659c53</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbK3ePcmCl3qI7kd2NzmW1i8s6EHBW9jsTjQlTeJuUuh_75ZWkYKnmWF-783wEDqn5JpSpW4oF0ki-TtlcSwoYQdoSGOlIsKVOgx9WEeb_QCdeL8ghCiZ0mM0YEwFvSBD9DSpMaxKC7WBKNceLPamcYC7BlvowHS4dbDSFdShA1e2n-B0hbXrwK2xLT0EER6_TGZXp-io0JWHs10dobe729fpQzR_vn-cTuaR4VJ0keKmENzmMS9YoYlijBsrOQ2DFJTlkmsuCmMKwwzVOSOJtJrnqchjKVIj-AiNt76ta7568F22LL2BqtI1NL3PKGOUcil5GtDLPXTR9K4O32WUJCGGNI5JoMiWMq7x3kGRta5carcOULYJOtsPOkgudsZ9vgT7K_hJNgDRFvD6A_5e_cfwGwCdg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082279440</pqid></control><display><type>article</type><title>An evidence-based score to detect prevalent peripheral artery disease (PAD)</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Duval, Sue ; Massaro, Joseph M ; Jaff, Michael R ; Boden, William E ; Alberts, Mark J ; Califf, Robert M ; Eagle, Kim A ; D’Agostino, Ralph B ; Pedley, Alison ; Fonarow, Gregg C ; Murabito, Joanne M ; Steg, P Gabriel ; Bhatt, Deepak L ; Hirsch, Alan T</creator><creatorcontrib>Duval, Sue ; Massaro, Joseph M ; Jaff, Michael R ; Boden, William E ; Alberts, Mark J ; Califf, Robert M ; Eagle, Kim A ; D’Agostino, Ralph B ; Pedley, Alison ; Fonarow, Gregg C ; Murabito, Joanne M ; Steg, P Gabriel ; Bhatt, Deepak L ; Hirsch, Alan T ; REACH Registry Investigators ; on behalf of the REACH Registry Investigators</creatorcontrib><description>Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimating PAD probability in individuals or populations. PAD presence was determined by a history of previous or current intermittent claudication associated with an ankle–brachial index (ABI) of &lt; 0.9 or previous lower extremity arterial intervention. Multivariable stepwise logistic regression identified cross-sectional correlates of PAD from demographic, clinical, and laboratory variables. Analyses were derived from 18,049 US REACH (REduction of Atherothrombosis for Continued Health) Registry outpatients with a complete baseline risk factor profile (enrolled from December 2003 to June 2004). Model performance was assessed internally using 10-fold cross validation, and effect estimates were used to generate the score. The model was externally validated using the Framingham Offspring Study. Age, sex, smoking, diabetes mellitus, body mass index, hypertension stage, and history of heart failure, coronary artery disease, and cerebrovascular disease were predictive of PAD prevalence. The model had reasonable discrimination on derivation and internal validation (c-statistic = 0.61 and 0.60, respectively) and external validation (c-statistic = 0.63 [ABI &lt; 0.9] or 0.64 [clinical PAD]). The model-estimated PAD prevalence varied more than threefold from lowest to highest decile (range, 4.5–16.7) and corresponded closely with actual PAD prevalence in each population. In conclusion, this new tool uses clinical variables to estimate PAD prevalence. While predictive power may be limited, it may improve PAD detection in vulnerable, at-risk populations.</description><identifier>ISSN: 1358-863X</identifier><identifier>EISSN: 1477-0377</identifier><identifier>DOI: 10.1177/1358863X12445102</identifier><identifier>PMID: 22711750</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged ; Aged, 80 and over ; Ankle Brachial Index ; Chi-Square Distribution ; Comorbidity ; Discriminant Analysis ; Evidence-Based Medicine ; Female ; Humans ; Intermittent Claudication - diagnosis ; Intermittent Claudication - epidemiology ; Logistic Models ; Male ; Mass Screening - methods ; Middle Aged ; Multivariate Analysis ; Nomograms ; Peripheral Arterial Disease - diagnosis ; Peripheral Arterial Disease - epidemiology ; Predictive Value of Tests ; Prevalence ; Probability ; Prognosis ; Prospective Studies ; Registries ; Reproducibility of Results ; Risk Assessment ; Risk Factors ; United States - epidemiology</subject><ispartof>Vascular Medicine, 2012-10, Vol.17 (5), p.342-351</ispartof><rights>The Author(s) 2012</rights><rights>SAGE Publications © Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-73cf53db43f2fa07223cd6312fa6512b63a35fccfc2c1ab2086da3b95b4659c53</citedby><cites>FETCH-LOGICAL-c365t-73cf53db43f2fa07223cd6312fa6512b63a35fccfc2c1ab2086da3b95b4659c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1358863X12445102$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1358863X12445102$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,778,782,790,21806,27909,27911,27912,43608,43609</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22711750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duval, Sue</creatorcontrib><creatorcontrib>Massaro, Joseph M</creatorcontrib><creatorcontrib>Jaff, Michael R</creatorcontrib><creatorcontrib>Boden, William E</creatorcontrib><creatorcontrib>Alberts, Mark J</creatorcontrib><creatorcontrib>Califf, Robert M</creatorcontrib><creatorcontrib>Eagle, Kim A</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><creatorcontrib>Pedley, Alison</creatorcontrib><creatorcontrib>Fonarow, Gregg C</creatorcontrib><creatorcontrib>Murabito, Joanne M</creatorcontrib><creatorcontrib>Steg, P Gabriel</creatorcontrib><creatorcontrib>Bhatt, Deepak L</creatorcontrib><creatorcontrib>Hirsch, Alan T</creatorcontrib><creatorcontrib>REACH Registry Investigators</creatorcontrib><creatorcontrib>on behalf of the REACH Registry Investigators</creatorcontrib><title>An evidence-based score to detect prevalent peripheral artery disease (PAD)</title><title>Vascular Medicine</title><addtitle>Vasc Med</addtitle><description>Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimating PAD probability in individuals or populations. PAD presence was determined by a history of previous or current intermittent claudication associated with an ankle–brachial index (ABI) of &lt; 0.9 or previous lower extremity arterial intervention. Multivariable stepwise logistic regression identified cross-sectional correlates of PAD from demographic, clinical, and laboratory variables. Analyses were derived from 18,049 US REACH (REduction of Atherothrombosis for Continued Health) Registry outpatients with a complete baseline risk factor profile (enrolled from December 2003 to June 2004). Model performance was assessed internally using 10-fold cross validation, and effect estimates were used to generate the score. The model was externally validated using the Framingham Offspring Study. Age, sex, smoking, diabetes mellitus, body mass index, hypertension stage, and history of heart failure, coronary artery disease, and cerebrovascular disease were predictive of PAD prevalence. The model had reasonable discrimination on derivation and internal validation (c-statistic = 0.61 and 0.60, respectively) and external validation (c-statistic = 0.63 [ABI &lt; 0.9] or 0.64 [clinical PAD]). The model-estimated PAD prevalence varied more than threefold from lowest to highest decile (range, 4.5–16.7) and corresponded closely with actual PAD prevalence in each population. In conclusion, this new tool uses clinical variables to estimate PAD prevalence. While predictive power may be limited, it may improve PAD detection in vulnerable, at-risk populations.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Ankle Brachial Index</subject><subject>Chi-Square Distribution</subject><subject>Comorbidity</subject><subject>Discriminant Analysis</subject><subject>Evidence-Based Medicine</subject><subject>Female</subject><subject>Humans</subject><subject>Intermittent Claudication - diagnosis</subject><subject>Intermittent Claudication - epidemiology</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Mass Screening - methods</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Nomograms</subject><subject>Peripheral Arterial Disease - diagnosis</subject><subject>Peripheral Arterial Disease - epidemiology</subject><subject>Predictive Value of Tests</subject><subject>Prevalence</subject><subject>Probability</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Registries</subject><subject>Reproducibility of Results</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>United States - epidemiology</subject><issn>1358-863X</issn><issn>1477-0377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kM1Lw0AQxRdRbK3ePcmCl3qI7kd2NzmW1i8s6EHBW9jsTjQlTeJuUuh_75ZWkYKnmWF-783wEDqn5JpSpW4oF0ki-TtlcSwoYQdoSGOlIsKVOgx9WEeb_QCdeL8ghCiZ0mM0YEwFvSBD9DSpMaxKC7WBKNceLPamcYC7BlvowHS4dbDSFdShA1e2n-B0hbXrwK2xLT0EER6_TGZXp-io0JWHs10dobe729fpQzR_vn-cTuaR4VJ0keKmENzmMS9YoYlijBsrOQ2DFJTlkmsuCmMKwwzVOSOJtJrnqchjKVIj-AiNt76ta7568F22LL2BqtI1NL3PKGOUcil5GtDLPXTR9K4O32WUJCGGNI5JoMiWMq7x3kGRta5carcOULYJOtsPOkgudsZ9vgT7K_hJNgDRFvD6A_5e_cfwGwCdg6w</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Duval, Sue</creator><creator>Massaro, Joseph M</creator><creator>Jaff, Michael R</creator><creator>Boden, William E</creator><creator>Alberts, Mark J</creator><creator>Califf, Robert M</creator><creator>Eagle, Kim A</creator><creator>D’Agostino, Ralph B</creator><creator>Pedley, Alison</creator><creator>Fonarow, Gregg C</creator><creator>Murabito, Joanne M</creator><creator>Steg, P Gabriel</creator><creator>Bhatt, Deepak L</creator><creator>Hirsch, Alan T</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>An evidence-based score to detect prevalent peripheral artery disease (PAD)</title><author>Duval, Sue ; Massaro, Joseph M ; Jaff, Michael R ; Boden, William E ; Alberts, Mark J ; Califf, Robert M ; Eagle, Kim A ; D’Agostino, Ralph B ; Pedley, Alison ; Fonarow, Gregg C ; Murabito, Joanne M ; Steg, P Gabriel ; Bhatt, Deepak L ; Hirsch, Alan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-73cf53db43f2fa07223cd6312fa6512b63a35fccfc2c1ab2086da3b95b4659c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Ankle Brachial Index</topic><topic>Chi-Square Distribution</topic><topic>Comorbidity</topic><topic>Discriminant Analysis</topic><topic>Evidence-Based Medicine</topic><topic>Female</topic><topic>Humans</topic><topic>Intermittent Claudication - diagnosis</topic><topic>Intermittent Claudication - epidemiology</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Mass Screening - methods</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Nomograms</topic><topic>Peripheral Arterial Disease - diagnosis</topic><topic>Peripheral Arterial Disease - epidemiology</topic><topic>Predictive Value of Tests</topic><topic>Prevalence</topic><topic>Probability</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Registries</topic><topic>Reproducibility of Results</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, Sue</creatorcontrib><creatorcontrib>Massaro, Joseph M</creatorcontrib><creatorcontrib>Jaff, Michael R</creatorcontrib><creatorcontrib>Boden, William E</creatorcontrib><creatorcontrib>Alberts, Mark J</creatorcontrib><creatorcontrib>Califf, Robert M</creatorcontrib><creatorcontrib>Eagle, Kim A</creatorcontrib><creatorcontrib>D’Agostino, Ralph B</creatorcontrib><creatorcontrib>Pedley, Alison</creatorcontrib><creatorcontrib>Fonarow, Gregg C</creatorcontrib><creatorcontrib>Murabito, Joanne M</creatorcontrib><creatorcontrib>Steg, P Gabriel</creatorcontrib><creatorcontrib>Bhatt, Deepak L</creatorcontrib><creatorcontrib>Hirsch, Alan T</creatorcontrib><creatorcontrib>REACH Registry Investigators</creatorcontrib><creatorcontrib>on behalf of the REACH Registry Investigators</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Vascular Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, Sue</au><au>Massaro, Joseph M</au><au>Jaff, Michael R</au><au>Boden, William E</au><au>Alberts, Mark J</au><au>Califf, Robert M</au><au>Eagle, Kim A</au><au>D’Agostino, Ralph B</au><au>Pedley, Alison</au><au>Fonarow, Gregg C</au><au>Murabito, Joanne M</au><au>Steg, P Gabriel</au><au>Bhatt, Deepak L</au><au>Hirsch, Alan T</au><aucorp>REACH Registry Investigators</aucorp><aucorp>on behalf of the REACH Registry Investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evidence-based score to detect prevalent peripheral artery disease (PAD)</atitle><jtitle>Vascular Medicine</jtitle><addtitle>Vasc Med</addtitle><date>2012-10</date><risdate>2012</risdate><volume>17</volume><issue>5</issue><spage>342</spage><epage>351</epage><pages>342-351</pages><issn>1358-863X</issn><eissn>1477-0377</eissn><abstract>Detection of peripheral artery disease (PAD) typically entails collection of medical history, physical examination, and noninvasive imaging, but whether a risk factor-based model has clinical utility in population screening is unclear. Our objective was to derive and validate a new score for estimating PAD probability in individuals or populations. PAD presence was determined by a history of previous or current intermittent claudication associated with an ankle–brachial index (ABI) of &lt; 0.9 or previous lower extremity arterial intervention. Multivariable stepwise logistic regression identified cross-sectional correlates of PAD from demographic, clinical, and laboratory variables. Analyses were derived from 18,049 US REACH (REduction of Atherothrombosis for Continued Health) Registry outpatients with a complete baseline risk factor profile (enrolled from December 2003 to June 2004). Model performance was assessed internally using 10-fold cross validation, and effect estimates were used to generate the score. The model was externally validated using the Framingham Offspring Study. Age, sex, smoking, diabetes mellitus, body mass index, hypertension stage, and history of heart failure, coronary artery disease, and cerebrovascular disease were predictive of PAD prevalence. The model had reasonable discrimination on derivation and internal validation (c-statistic = 0.61 and 0.60, respectively) and external validation (c-statistic = 0.63 [ABI &lt; 0.9] or 0.64 [clinical PAD]). The model-estimated PAD prevalence varied more than threefold from lowest to highest decile (range, 4.5–16.7) and corresponded closely with actual PAD prevalence in each population. In conclusion, this new tool uses clinical variables to estimate PAD prevalence. While predictive power may be limited, it may improve PAD detection in vulnerable, at-risk populations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>22711750</pmid><doi>10.1177/1358863X12445102</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1358-863X
ispartof Vascular Medicine, 2012-10, Vol.17 (5), p.342-351
issn 1358-863X
1477-0377
language eng
recordid cdi_proquest_miscellaneous_1221136639
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SAGE Complete A-Z List; Alma/SFX Local Collection
subjects Aged
Aged, 80 and over
Ankle Brachial Index
Chi-Square Distribution
Comorbidity
Discriminant Analysis
Evidence-Based Medicine
Female
Humans
Intermittent Claudication - diagnosis
Intermittent Claudication - epidemiology
Logistic Models
Male
Mass Screening - methods
Middle Aged
Multivariate Analysis
Nomograms
Peripheral Arterial Disease - diagnosis
Peripheral Arterial Disease - epidemiology
Predictive Value of Tests
Prevalence
Probability
Prognosis
Prospective Studies
Registries
Reproducibility of Results
Risk Assessment
Risk Factors
United States - epidemiology
title An evidence-based score to detect prevalent peripheral artery disease (PAD)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evidence-based%20score%20to%20detect%20prevalent%20peripheral%20artery%20disease%20(PAD)&rft.jtitle=Vascular%20Medicine&rft.au=Duval,%20Sue&rft.aucorp=REACH%20Registry%20Investigators&rft.date=2012-10&rft.volume=17&rft.issue=5&rft.spage=342&rft.epage=351&rft.pages=342-351&rft.issn=1358-863X&rft.eissn=1477-0377&rft_id=info:doi/10.1177/1358863X12445102&rft_dat=%3Cproquest_cross%3E1221136639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082279440&rft_id=info:pmid/22711750&rft_sage_id=10.1177_1358863X12445102&rfr_iscdi=true