Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?

Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG “virtual electrodes” are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2013-01, Vol.64, p.185-196
Hauptverfasser: Millman, Rebecca E., Prendergast, Garreth, Hymers, Mark, Green, Gary G.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue
container_start_page 185
container_title NeuroImage (Orlando, Fla.)
container_volume 64
creator Millman, Rebecca E.
Prendergast, Garreth
Hymers, Mark
Green, Gary G.R.
description Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG “virtual electrodes” are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual electrodes can replicate the findings from intracortical “depth” electrode studies relevant to the processing of the temporal envelopes of sounds [e.g. Nourski et al. (2009) “Temporal envelope of time-compressed speech represented in the human auditory cortex,” J. Neurosci. 29:15564–15574]. Specifically we aimed to determine whether it is possible to use non-invasive MEG virtual electrodes to characterise the representation of temporal envelopes of 6-Hz sinusoidal amplitude modulation (SAM) and speech using both auditory evoked fields (AEFs) and patterns of power changes in high-frequency (>70Hz) bands. MEG signals were analysed using a location of interest (LOI) approach by seeding virtual electrodes in the left and right posteromedial Heschl's gyri. AEFs showed phase-locking to the temporal envelope of SAM and speech stimuli. Time-frequency analyses revealed no clear differences in high gamma power between the pre-stimulus baseline and the post-stimulus presentation periods. Nevertheless the patterns of changes in high gamma power were significantly correlated with the temporal envelopes of 6-Hz SAM and speech in the majority of participants. The present study reveals difficulties in replicating clear augmentations in high gamma power changes using MEG virtual electrodes cf. intracortical “depth” electrode studies (Nourski et al., 2009). ► Phase-locked activity encodes the temporal envelopes of sounds. ► Temporal envelopes are also encoded by power patterns in the “high gamma” band. ► Temporal envelope encoding investigated using non-invasive MEG “virtual electrodes” ► Virtual electrodes reconstruct phase-locked responses to temporal envelopes. ► Virtual electrodes are less successful in reconstructing “high gamma” power patterns.
doi_str_mv 10.1016/j.neuroimage.2012.09.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1220362995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811912009275</els_id><sourcerecordid>1220362995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6cc04d45374bba2ccafa539f63caa3054c96df69437951ad656a29d963ff3d453</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhQtRnLH1FSQggptqk1RVquNGtBlHYUQQXYd0cms6TVVS5qdxdvMg-l6u50lM6J4ZcOMqNzffObnJqSpE8JJgwl7vlhaSd2aSl7CkmNAl5ktM-gfVKcG8q3nX04el7pp6RQg_qZ6EsMMYc9KuHlcnlPIVZ7Q7rf58hdlDABtlNM4G5AYUt4AiTLPzckRg9zC6GcpBcMnqgIxF2zRJi2TSJjp_hZTzEX6-QevcLOrsmMYY0ODdlPG9DGYPuYheFtSobHxz_UvDHLc3178RjKCid7ooM6CNvQxoU3bzmOEIGqWQm8g6W9_5fT47Ly5742Mqk96ahGz59mn1aJBjgGfHdVF9_3D2bf2xvvhy_mn97qJWbUNjzZTCrW67pm83G0mVkoPsGj6wRknZ4K5VnOmB8bbpeUekZh2TlGvOmmFoim5RvTr4zt79SBCimExQMI7SgktBEEpxwyjnBX3xD7pzyds8nSBdRzHFPe0ztTpQyrsQPAxi9jlofyUIFiV9sRP36YuSvsBc5PSz9PnxgrSZQN8Jb-POwMsjIEPOYPDSKhPuuZ4QzPLbFtX7Awf55_YGvAjKgFWgTQ4oCu3M_6f5C3FK3JM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552020727</pqid></control><display><type>article</type><title>Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Millman, Rebecca E. ; Prendergast, Garreth ; Hymers, Mark ; Green, Gary G.R.</creator><creatorcontrib>Millman, Rebecca E. ; Prendergast, Garreth ; Hymers, Mark ; Green, Gary G.R.</creatorcontrib><description>Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG “virtual electrodes” are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual electrodes can replicate the findings from intracortical “depth” electrode studies relevant to the processing of the temporal envelopes of sounds [e.g. Nourski et al. (2009) “Temporal envelope of time-compressed speech represented in the human auditory cortex,” J. Neurosci. 29:15564–15574]. Specifically we aimed to determine whether it is possible to use non-invasive MEG virtual electrodes to characterise the representation of temporal envelopes of 6-Hz sinusoidal amplitude modulation (SAM) and speech using both auditory evoked fields (AEFs) and patterns of power changes in high-frequency (&gt;70Hz) bands. MEG signals were analysed using a location of interest (LOI) approach by seeding virtual electrodes in the left and right posteromedial Heschl's gyri. AEFs showed phase-locking to the temporal envelope of SAM and speech stimuli. Time-frequency analyses revealed no clear differences in high gamma power between the pre-stimulus baseline and the post-stimulus presentation periods. Nevertheless the patterns of changes in high gamma power were significantly correlated with the temporal envelopes of 6-Hz SAM and speech in the majority of participants. The present study reveals difficulties in replicating clear augmentations in high gamma power changes using MEG virtual electrodes cf. intracortical “depth” electrode studies (Nourski et al., 2009). ► Phase-locked activity encodes the temporal envelopes of sounds. ► Temporal envelopes are also encoded by power patterns in the “high gamma” band. ► Temporal envelope encoding investigated using non-invasive MEG “virtual electrodes” ► Virtual electrodes reconstruct phase-locked responses to temporal envelopes. ► Virtual electrodes are less successful in reconstructing “high gamma” power patterns.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.09.017</identifier><identifier>PMID: 22989625</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Auditory Cortex - physiology ; Beamforming ; Biological and medical sciences ; Brain ; Brain Mapping - instrumentation ; Brain Mapping - methods ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Electrodes ; Evoked Potentials, Auditory - physiology ; Female ; Fundamental and applied biological sciences. Psychology ; Humans ; Hypotheses ; Magnetoencephalography ; Magnetoencephalography - instrumentation ; Magnetoencephalography - methods ; Male ; Medical imaging ; Middle Aged ; Nerve Net - physiology ; Pattern Recognition, Automated - methods ; Phase-locking ; Reproducibility of Results ; Sensitivity and Specificity ; Speech ; Speech Perception - physiology ; Studies ; Time series ; Time-frequency analyses ; Vertebrates: nervous system and sense organs ; Virtual electrodes ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.185-196</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6cc04d45374bba2ccafa539f63caa3054c96df69437951ad656a29d963ff3d453</citedby><cites>FETCH-LOGICAL-c432t-6cc04d45374bba2ccafa539f63caa3054c96df69437951ad656a29d963ff3d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811912009275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27110696$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22989625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Millman, Rebecca E.</creatorcontrib><creatorcontrib>Prendergast, Garreth</creatorcontrib><creatorcontrib>Hymers, Mark</creatorcontrib><creatorcontrib>Green, Gary G.R.</creatorcontrib><title>Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG “virtual electrodes” are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual electrodes can replicate the findings from intracortical “depth” electrode studies relevant to the processing of the temporal envelopes of sounds [e.g. Nourski et al. (2009) “Temporal envelope of time-compressed speech represented in the human auditory cortex,” J. Neurosci. 29:15564–15574]. Specifically we aimed to determine whether it is possible to use non-invasive MEG virtual electrodes to characterise the representation of temporal envelopes of 6-Hz sinusoidal amplitude modulation (SAM) and speech using both auditory evoked fields (AEFs) and patterns of power changes in high-frequency (&gt;70Hz) bands. MEG signals were analysed using a location of interest (LOI) approach by seeding virtual electrodes in the left and right posteromedial Heschl's gyri. AEFs showed phase-locking to the temporal envelope of SAM and speech stimuli. Time-frequency analyses revealed no clear differences in high gamma power between the pre-stimulus baseline and the post-stimulus presentation periods. Nevertheless the patterns of changes in high gamma power were significantly correlated with the temporal envelopes of 6-Hz SAM and speech in the majority of participants. The present study reveals difficulties in replicating clear augmentations in high gamma power changes using MEG virtual electrodes cf. intracortical “depth” electrode studies (Nourski et al., 2009). ► Phase-locked activity encodes the temporal envelopes of sounds. ► Temporal envelopes are also encoded by power patterns in the “high gamma” band. ► Temporal envelope encoding investigated using non-invasive MEG “virtual electrodes” ► Virtual electrodes reconstruct phase-locked responses to temporal envelopes. ► Virtual electrodes are less successful in reconstructing “high gamma” power patterns.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Auditory Cortex - physiology</subject><subject>Beamforming</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Brain Mapping - instrumentation</subject><subject>Brain Mapping - methods</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Electrodes</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Magnetoencephalography</subject><subject>Magnetoencephalography - instrumentation</subject><subject>Magnetoencephalography - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Nerve Net - physiology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phase-locking</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Speech</subject><subject>Speech Perception - physiology</subject><subject>Studies</subject><subject>Time series</subject><subject>Time-frequency analyses</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Virtual electrodes</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc2KFDEUhQtRnLH1FSQggptqk1RVquNGtBlHYUQQXYd0cms6TVVS5qdxdvMg-l6u50lM6J4ZcOMqNzffObnJqSpE8JJgwl7vlhaSd2aSl7CkmNAl5ktM-gfVKcG8q3nX04el7pp6RQg_qZ6EsMMYc9KuHlcnlPIVZ7Q7rf58hdlDABtlNM4G5AYUt4AiTLPzckRg9zC6GcpBcMnqgIxF2zRJi2TSJjp_hZTzEX6-QevcLOrsmMYY0ODdlPG9DGYPuYheFtSobHxz_UvDHLc3178RjKCid7ooM6CNvQxoU3bzmOEIGqWQm8g6W9_5fT47Ly5742Mqk96ahGz59mn1aJBjgGfHdVF9_3D2bf2xvvhy_mn97qJWbUNjzZTCrW67pm83G0mVkoPsGj6wRknZ4K5VnOmB8bbpeUekZh2TlGvOmmFoim5RvTr4zt79SBCimExQMI7SgktBEEpxwyjnBX3xD7pzyds8nSBdRzHFPe0ztTpQyrsQPAxi9jlofyUIFiV9sRP36YuSvsBc5PSz9PnxgrSZQN8Jb-POwMsjIEPOYPDSKhPuuZ4QzPLbFtX7Awf55_YGvAjKgFWgTQ4oCu3M_6f5C3FK3JM</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Millman, Rebecca E.</creator><creator>Prendergast, Garreth</creator><creator>Hymers, Mark</creator><creator>Green, Gary G.R.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?</title><author>Millman, Rebecca E. ; Prendergast, Garreth ; Hymers, Mark ; Green, Gary G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6cc04d45374bba2ccafa539f63caa3054c96df69437951ad656a29d963ff3d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Auditory Cortex - physiology</topic><topic>Beamforming</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Brain Mapping - instrumentation</topic><topic>Brain Mapping - methods</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Electrodes</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Magnetoencephalography</topic><topic>Magnetoencephalography - instrumentation</topic><topic>Magnetoencephalography - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Nerve Net - physiology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phase-locking</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Speech</topic><topic>Speech Perception - physiology</topic><topic>Studies</topic><topic>Time series</topic><topic>Time-frequency analyses</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Virtual electrodes</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millman, Rebecca E.</creatorcontrib><creatorcontrib>Prendergast, Garreth</creatorcontrib><creatorcontrib>Hymers, Mark</creatorcontrib><creatorcontrib>Green, Gary G.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millman, Rebecca E.</au><au>Prendergast, Garreth</au><au>Hymers, Mark</au><au>Green, Gary G.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>64</volume><spage>185</spage><epage>196</epage><pages>185-196</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Magnetoencephalography (MEG) beamformer analyses use spatial filters to estimate neuronal activity underlying the magnetic fields measured by the MEG sensors. MEG “virtual electrodes” are the outputs of beamformer spatial filters. The present study aimed to test the hypothesis that MEG virtual electrodes can replicate the findings from intracortical “depth” electrode studies relevant to the processing of the temporal envelopes of sounds [e.g. Nourski et al. (2009) “Temporal envelope of time-compressed speech represented in the human auditory cortex,” J. Neurosci. 29:15564–15574]. Specifically we aimed to determine whether it is possible to use non-invasive MEG virtual electrodes to characterise the representation of temporal envelopes of 6-Hz sinusoidal amplitude modulation (SAM) and speech using both auditory evoked fields (AEFs) and patterns of power changes in high-frequency (&gt;70Hz) bands. MEG signals were analysed using a location of interest (LOI) approach by seeding virtual electrodes in the left and right posteromedial Heschl's gyri. AEFs showed phase-locking to the temporal envelope of SAM and speech stimuli. Time-frequency analyses revealed no clear differences in high gamma power between the pre-stimulus baseline and the post-stimulus presentation periods. Nevertheless the patterns of changes in high gamma power were significantly correlated with the temporal envelopes of 6-Hz SAM and speech in the majority of participants. The present study reveals difficulties in replicating clear augmentations in high gamma power changes using MEG virtual electrodes cf. intracortical “depth” electrode studies (Nourski et al., 2009). ► Phase-locked activity encodes the temporal envelopes of sounds. ► Temporal envelopes are also encoded by power patterns in the “high gamma” band. ► Temporal envelope encoding investigated using non-invasive MEG “virtual electrodes” ► Virtual electrodes reconstruct phase-locked responses to temporal envelopes. ► Virtual electrodes are less successful in reconstructing “high gamma” power patterns.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>22989625</pmid><doi>10.1016/j.neuroimage.2012.09.017</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.185-196
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1220362995
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Algorithms
Auditory Cortex - physiology
Beamforming
Biological and medical sciences
Brain
Brain Mapping - instrumentation
Brain Mapping - methods
Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation
Electrodes
Evoked Potentials, Auditory - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
Hypotheses
Magnetoencephalography
Magnetoencephalography - instrumentation
Magnetoencephalography - methods
Male
Medical imaging
Middle Aged
Nerve Net - physiology
Pattern Recognition, Automated - methods
Phase-locking
Reproducibility of Results
Sensitivity and Specificity
Speech
Speech Perception - physiology
Studies
Time series
Time-frequency analyses
Vertebrates: nervous system and sense organs
Virtual electrodes
Young Adult
title Representations of the temporal envelope of sounds in human auditory cortex: Can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20the%20temporal%20envelope%20of%20sounds%20in%20human%20auditory%20cortex:%20Can%20the%20results%20from%20invasive%20intracortical%20%E2%80%9Cdepth%E2%80%9D%20electrode%20recordings%20be%20replicated%20using%20non-invasive%20MEG%20%E2%80%9Cvirtual%20electrodes%E2%80%9D?&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Millman,%20Rebecca%20E.&rft.date=2013-01-01&rft.volume=64&rft.spage=185&rft.epage=196&rft.pages=185-196&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.09.017&rft_dat=%3Cproquest_cross%3E1220362995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552020727&rft_id=info:pmid/22989625&rft_els_id=S1053811912009275&rfr_iscdi=true