Undular bore theory for the Gardner equation
We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036605-036605, Article 036605 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 036605 |
---|---|
container_issue | 3 Pt 2 |
container_start_page | 036605 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 86 |
creator | Kamchatnov, A M Kuo, Y-H Lin, T-C Horng, T-L Gou, S-C Clift, R El, G A Grimshaw, R H J |
description | We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations. |
doi_str_mv | 10.1103/PhysRevE.86.036605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186916507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186916507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9fc2a1bd52fc75ebf6688a2d3290f4f179e88d187fa3ae5e90b78b5841526d9c3</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujEUT_gAszSxcOtn3Tr6UhiCYkGiPrpjN9DZhhBtoZE_69EMDVvYt77uIQcs_omDEKz5_LXfrC3-lYyzEFKam4IEMmBM05KHl56GByUEIMyE1KP5QCB11ckwEHCowWMCRPi8b3tYtZ2UbMuiW2cZeFNh5qNnPRNxgz3PauW7XNLbkKrk54d8oRWbxOvydv-fxj9j55mecVGNnlJlTcsdILHiolsAxSau24B25oKAJTBrX2TKvgwKFAQ0ulS6ELJrj0poIReTz-bmK77TF1dr1KFda1a7Dtk2VMS8OkoGo_5cdpFduUIga7iau1izvLqD1YsmdLVkt7tLSHHk7_fblG_4-ctcAfcdljoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186916507</pqid></control><display><type>article</type><title>Undular bore theory for the Gardner equation</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Kamchatnov, A M ; Kuo, Y-H ; Lin, T-C ; Horng, T-L ; Gou, S-C ; Clift, R ; El, G A ; Grimshaw, R H J</creator><creatorcontrib>Kamchatnov, A M ; Kuo, Y-H ; Lin, T-C ; Horng, T-L ; Gou, S-C ; Clift, R ; El, G A ; Grimshaw, R H J</creatorcontrib><description>We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.86.036605</identifier><identifier>PMID: 23031043</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Computer Simulation ; Models, Chemical</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036605-036605, Article 036605</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9fc2a1bd52fc75ebf6688a2d3290f4f179e88d187fa3ae5e90b78b5841526d9c3</citedby><cites>FETCH-LOGICAL-c396t-9fc2a1bd52fc75ebf6688a2d3290f4f179e88d187fa3ae5e90b78b5841526d9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23031043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamchatnov, A M</creatorcontrib><creatorcontrib>Kuo, Y-H</creatorcontrib><creatorcontrib>Lin, T-C</creatorcontrib><creatorcontrib>Horng, T-L</creatorcontrib><creatorcontrib>Gou, S-C</creatorcontrib><creatorcontrib>Clift, R</creatorcontrib><creatorcontrib>El, G A</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><title>Undular bore theory for the Gardner equation</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Models, Chemical</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PAjEURRujEUT_gAszSxcOtn3Tr6UhiCYkGiPrpjN9DZhhBtoZE_69EMDVvYt77uIQcs_omDEKz5_LXfrC3-lYyzEFKam4IEMmBM05KHl56GByUEIMyE1KP5QCB11ckwEHCowWMCRPi8b3tYtZ2UbMuiW2cZeFNh5qNnPRNxgz3PauW7XNLbkKrk54d8oRWbxOvydv-fxj9j55mecVGNnlJlTcsdILHiolsAxSau24B25oKAJTBrX2TKvgwKFAQ0ulS6ELJrj0poIReTz-bmK77TF1dr1KFda1a7Dtk2VMS8OkoGo_5cdpFduUIga7iau1izvLqD1YsmdLVkt7tLSHHk7_fblG_4-ctcAfcdljoA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Kamchatnov, A M</creator><creator>Kuo, Y-H</creator><creator>Lin, T-C</creator><creator>Horng, T-L</creator><creator>Gou, S-C</creator><creator>Clift, R</creator><creator>El, G A</creator><creator>Grimshaw, R H J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201209</creationdate><title>Undular bore theory for the Gardner equation</title><author>Kamchatnov, A M ; Kuo, Y-H ; Lin, T-C ; Horng, T-L ; Gou, S-C ; Clift, R ; El, G A ; Grimshaw, R H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9fc2a1bd52fc75ebf6688a2d3290f4f179e88d187fa3ae5e90b78b5841526d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Models, Chemical</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamchatnov, A M</creatorcontrib><creatorcontrib>Kuo, Y-H</creatorcontrib><creatorcontrib>Lin, T-C</creatorcontrib><creatorcontrib>Horng, T-L</creatorcontrib><creatorcontrib>Gou, S-C</creatorcontrib><creatorcontrib>Clift, R</creatorcontrib><creatorcontrib>El, G A</creatorcontrib><creatorcontrib>Grimshaw, R H J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamchatnov, A M</au><au>Kuo, Y-H</au><au>Lin, T-C</au><au>Horng, T-L</au><au>Gou, S-C</au><au>Clift, R</au><au>El, G A</au><au>Grimshaw, R H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Undular bore theory for the Gardner equation</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-09</date><risdate>2012</risdate><volume>86</volume><issue>3 Pt 2</issue><spage>036605</spage><epage>036605</epage><pages>036605-036605</pages><artnum>036605</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.</abstract><cop>United States</cop><pmid>23031043</pmid><doi>10.1103/PhysRevE.86.036605</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036605-036605, Article 036605 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1186916507 |
source | MEDLINE; American Physical Society Journals |
subjects | Algorithms Computer Simulation Models, Chemical |
title | Undular bore theory for the Gardner equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Undular%20bore%20theory%20for%20the%20Gardner%20equation&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Kamchatnov,%20A%20M&rft.date=2012-09&rft.volume=86&rft.issue=3%20Pt%202&rft.spage=036605&rft.epage=036605&rft.pages=036605-036605&rft.artnum=036605&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.86.036605&rft_dat=%3Cproquest_cross%3E1186916507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186916507&rft_id=info:pmid/23031043&rfr_iscdi=true |