Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring
The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (47), p.19345-19350 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19350 |
---|---|
container_issue | 47 |
container_start_page | 19345 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Lamichhaney, Sangeet Barrio, Alvaro Martinez Rafati, Nima Sundström, Görel Rubin, Carl-Johan Gilbert, Elizabeth R Berglund, Jonas Wetterbom, Anna Laikre, Linda Webster, Matthew T Grabherr, Manfred Ryman, Nils Andersson, Leif |
description | The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F ST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection. |
doi_str_mv | 10.1073/pnas.1216128109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186914893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830211</jstor_id><sourcerecordid>41830211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c702t-1506e0f461e2c99e877c9ba2b2687176e0f47f93dd790881c7965100fc98ecf3</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEokvhzAmIxAUJ0s7YTmxfkFblU6oEEoWr5XWc1KtsvLWTIv57nM2ypUioF1vy_N7TeOZl2VOEEwROT7e9jidIsEIiEOS9bJFOLCom4X62ACC8EIywo-xRjGsAkKWAh9kRoUgZJ3KRtV_9duz04HxfRKM7m0d7NdreuL7Ng722uot5a3s7OJPXrmlssP3gdoK8Hm0--LzzSZjrWm-H-d31-XLodD9pLm0Iyetx9qBJVvbJ_j7OLj68vzj7VJx_-fj5bHleGA5kKLCEykLDKrTESGkF50auNFmRSnDkuxpvJK1rLkEINFxWJQI0RgprGnqcFbNt_Gm340ptg9vo8Et57VTsxpUO06WiVYxCVSb-zX_5d-7HUvnQqnFUKBGYTPjru_E4KsF4RRP9dqYTurG1SYMLurslul3p3aVq_bWiJWLaYzJ4tTcIPi0lDmrjorFdGq31Y1QogCIrmSB3oygqiUzIqa2X_6BrP4Y-bWWiMCVJ7Jo_nSkTfIzBNoe-EdSUPTVlT91kLyme__3dA_8nbAnI98CkvLGTivE0YcqmfTybkXUcfDgwDAUFgpjqL-Z6o73SbXBRff9GACsApMAS8RvYGvRP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1181128863</pqid></control><display><type>article</type><title>Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lamichhaney, Sangeet ; Barrio, Alvaro Martinez ; Rafati, Nima ; Sundström, Görel ; Rubin, Carl-Johan ; Gilbert, Elizabeth R ; Berglund, Jonas ; Wetterbom, Anna ; Laikre, Linda ; Webster, Matthew T ; Grabherr, Manfred ; Ryman, Nils ; Andersson, Leif</creator><creatorcontrib>Lamichhaney, Sangeet ; Barrio, Alvaro Martinez ; Rafati, Nima ; Sundström, Görel ; Rubin, Carl-Johan ; Gilbert, Elizabeth R ; Berglund, Jonas ; Wetterbom, Anna ; Laikre, Linda ; Webster, Matthew T ; Grabherr, Manfred ; Ryman, Nils ; Andersson, Leif ; Sveriges lantbruksuniversitet</creatorcontrib><description>The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F ST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1216128109</identifier><identifier>PMID: 23134729</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation, Physiological - genetics ; Alleles ; Animal populations ; Animals ; Atlantic Ocean ; Baltic herring ; Baltic herring | genetics | population biology ; Baltic Sea ; Biological Sciences ; Clupea harengus ; Computer Simulation ; cost effectiveness ; Exome - genetics ; exons ; Fish ; Fishes - genetics ; Gene frequency ; Gene Frequency - genetics ; Gene loci ; genetic drift ; Genetic loci ; Genetic Loci - genetics ; genetic markers ; Genetic variation ; genetics ; Genetics and Breeding ; Genetics, Population ; Genetik och förädling ; Genome - genetics ; Genomes ; Genomics ; Genotyping Techniques ; Geography ; Herring ; loci ; marine fish ; Marine fishes ; muscles ; natural selection ; Northern European region ; Polymorphism, Single Nucleotide - genetics ; population biology ; Population Genetics ; population size ; population structure ; populationsgenetik ; Salinity ; Seas ; Sequence Analysis, DNA ; Simulation ; single nucleotide polymorphism ; Specimen Handling ; transcriptome ; Transcriptome - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19345-19350</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c702t-1506e0f461e2c99e877c9ba2b2687176e0f47f93dd790881c7965100fc98ecf3</citedby><cites>FETCH-LOGICAL-c702t-1506e0f461e2c99e877c9ba2b2687176e0f47f93dd790881c7965100fc98ecf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830211$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23134729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-84763$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-191049$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/43065$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamichhaney, Sangeet</creatorcontrib><creatorcontrib>Barrio, Alvaro Martinez</creatorcontrib><creatorcontrib>Rafati, Nima</creatorcontrib><creatorcontrib>Sundström, Görel</creatorcontrib><creatorcontrib>Rubin, Carl-Johan</creatorcontrib><creatorcontrib>Gilbert, Elizabeth R</creatorcontrib><creatorcontrib>Berglund, Jonas</creatorcontrib><creatorcontrib>Wetterbom, Anna</creatorcontrib><creatorcontrib>Laikre, Linda</creatorcontrib><creatorcontrib>Webster, Matthew T</creatorcontrib><creatorcontrib>Grabherr, Manfred</creatorcontrib><creatorcontrib>Ryman, Nils</creatorcontrib><creatorcontrib>Andersson, Leif</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F ST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.</description><subject>Adaptation, Physiological - genetics</subject><subject>Alleles</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Atlantic Ocean</subject><subject>Baltic herring</subject><subject>Baltic herring | genetics | population biology</subject><subject>Baltic Sea</subject><subject>Biological Sciences</subject><subject>Clupea harengus</subject><subject>Computer Simulation</subject><subject>cost effectiveness</subject><subject>Exome - genetics</subject><subject>exons</subject><subject>Fish</subject><subject>Fishes - genetics</subject><subject>Gene frequency</subject><subject>Gene Frequency - genetics</subject><subject>Gene loci</subject><subject>genetic drift</subject><subject>Genetic loci</subject><subject>Genetic Loci - genetics</subject><subject>genetic markers</subject><subject>Genetic variation</subject><subject>genetics</subject><subject>Genetics and Breeding</subject><subject>Genetics, Population</subject><subject>Genetik och förädling</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping Techniques</subject><subject>Geography</subject><subject>Herring</subject><subject>loci</subject><subject>marine fish</subject><subject>Marine fishes</subject><subject>muscles</subject><subject>natural selection</subject><subject>Northern European region</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>population biology</subject><subject>Population Genetics</subject><subject>population size</subject><subject>population structure</subject><subject>populationsgenetik</subject><subject>Salinity</subject><subject>Seas</subject><subject>Sequence Analysis, DNA</subject><subject>Simulation</subject><subject>single nucleotide polymorphism</subject><subject>Specimen Handling</subject><subject>transcriptome</subject><subject>Transcriptome - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1v1DAQxSMEokvhzAmIxAUJ0s7YTmxfkFblU6oEEoWr5XWc1KtsvLWTIv57nM2ypUioF1vy_N7TeOZl2VOEEwROT7e9jidIsEIiEOS9bJFOLCom4X62ACC8EIywo-xRjGsAkKWAh9kRoUgZJ3KRtV_9duz04HxfRKM7m0d7NdreuL7Ng722uot5a3s7OJPXrmlssP3gdoK8Hm0--LzzSZjrWm-H-d31-XLodD9pLm0Iyetx9qBJVvbJ_j7OLj68vzj7VJx_-fj5bHleGA5kKLCEykLDKrTESGkF50auNFmRSnDkuxpvJK1rLkEINFxWJQI0RgprGnqcFbNt_Gm340ptg9vo8Et57VTsxpUO06WiVYxCVSb-zX_5d-7HUvnQqnFUKBGYTPjru_E4KsF4RRP9dqYTurG1SYMLurslul3p3aVq_bWiJWLaYzJ4tTcIPi0lDmrjorFdGq31Y1QogCIrmSB3oygqiUzIqa2X_6BrP4Y-bWWiMCVJ7Jo_nSkTfIzBNoe-EdSUPTVlT91kLyme__3dA_8nbAnI98CkvLGTivE0YcqmfTybkXUcfDgwDAUFgpjqL-Z6o73SbXBRff9GACsApMAS8RvYGvRP</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>Lamichhaney, Sangeet</creator><creator>Barrio, Alvaro Martinez</creator><creator>Rafati, Nima</creator><creator>Sundström, Görel</creator><creator>Rubin, Carl-Johan</creator><creator>Gilbert, Elizabeth R</creator><creator>Berglund, Jonas</creator><creator>Wetterbom, Anna</creator><creator>Laikre, Linda</creator><creator>Webster, Matthew T</creator><creator>Grabherr, Manfred</creator><creator>Ryman, Nils</creator><creator>Andersson, Leif</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><scope>DF2</scope></search><sort><creationdate>20121120</creationdate><title>Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring</title><author>Lamichhaney, Sangeet ; Barrio, Alvaro Martinez ; Rafati, Nima ; Sundström, Görel ; Rubin, Carl-Johan ; Gilbert, Elizabeth R ; Berglund, Jonas ; Wetterbom, Anna ; Laikre, Linda ; Webster, Matthew T ; Grabherr, Manfred ; Ryman, Nils ; Andersson, Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c702t-1506e0f461e2c99e877c9ba2b2687176e0f47f93dd790881c7965100fc98ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Alleles</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Atlantic Ocean</topic><topic>Baltic herring</topic><topic>Baltic herring | genetics | population biology</topic><topic>Baltic Sea</topic><topic>Biological Sciences</topic><topic>Clupea harengus</topic><topic>Computer Simulation</topic><topic>cost effectiveness</topic><topic>Exome - genetics</topic><topic>exons</topic><topic>Fish</topic><topic>Fishes - genetics</topic><topic>Gene frequency</topic><topic>Gene Frequency - genetics</topic><topic>Gene loci</topic><topic>genetic drift</topic><topic>Genetic loci</topic><topic>Genetic Loci - genetics</topic><topic>genetic markers</topic><topic>Genetic variation</topic><topic>genetics</topic><topic>Genetics and Breeding</topic><topic>Genetics, Population</topic><topic>Genetik och förädling</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping Techniques</topic><topic>Geography</topic><topic>Herring</topic><topic>loci</topic><topic>marine fish</topic><topic>Marine fishes</topic><topic>muscles</topic><topic>natural selection</topic><topic>Northern European region</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>population biology</topic><topic>Population Genetics</topic><topic>population size</topic><topic>population structure</topic><topic>populationsgenetik</topic><topic>Salinity</topic><topic>Seas</topic><topic>Sequence Analysis, DNA</topic><topic>Simulation</topic><topic>single nucleotide polymorphism</topic><topic>Specimen Handling</topic><topic>transcriptome</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamichhaney, Sangeet</creatorcontrib><creatorcontrib>Barrio, Alvaro Martinez</creatorcontrib><creatorcontrib>Rafati, Nima</creatorcontrib><creatorcontrib>Sundström, Görel</creatorcontrib><creatorcontrib>Rubin, Carl-Johan</creatorcontrib><creatorcontrib>Gilbert, Elizabeth R</creatorcontrib><creatorcontrib>Berglund, Jonas</creatorcontrib><creatorcontrib>Wetterbom, Anna</creatorcontrib><creatorcontrib>Laikre, Linda</creatorcontrib><creatorcontrib>Webster, Matthew T</creatorcontrib><creatorcontrib>Grabherr, Manfred</creatorcontrib><creatorcontrib>Ryman, Nils</creatorcontrib><creatorcontrib>Andersson, Leif</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamichhaney, Sangeet</au><au>Barrio, Alvaro Martinez</au><au>Rafati, Nima</au><au>Sundström, Görel</au><au>Rubin, Carl-Johan</au><au>Gilbert, Elizabeth R</au><au>Berglund, Jonas</au><au>Wetterbom, Anna</au><au>Laikre, Linda</au><au>Webster, Matthew T</au><au>Grabherr, Manfred</au><au>Ryman, Nils</au><au>Andersson, Leif</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-20</date><risdate>2012</risdate><volume>109</volume><issue>47</issue><spage>19345</spage><epage>19350</epage><pages>19345-19350</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index F ST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23134729</pmid><doi>10.1073/pnas.1216128109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (47), p.19345-19350 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1186914893 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptation, Physiological - genetics Alleles Animal populations Animals Atlantic Ocean Baltic herring Baltic herring | genetics | population biology Baltic Sea Biological Sciences Clupea harengus Computer Simulation cost effectiveness Exome - genetics exons Fish Fishes - genetics Gene frequency Gene Frequency - genetics Gene loci genetic drift Genetic loci Genetic Loci - genetics genetic markers Genetic variation genetics Genetics and Breeding Genetics, Population Genetik och förädling Genome - genetics Genomes Genomics Genotyping Techniques Geography Herring loci marine fish Marine fishes muscles natural selection Northern European region Polymorphism, Single Nucleotide - genetics population biology Population Genetics population size population structure populationsgenetik Salinity Seas Sequence Analysis, DNA Simulation single nucleotide polymorphism Specimen Handling transcriptome Transcriptome - genetics |
title | Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population-scale%20sequencing%20reveals%20genetic%20differentiation%20due%20to%20local%20adaptation%20in%20Atlantic%20herring&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lamichhaney,%20Sangeet&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2012-11-20&rft.volume=109&rft.issue=47&rft.spage=19345&rft.epage=19350&rft.pages=19345-19350&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1216128109&rft_dat=%3Cjstor_proqu%3E41830211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1181128863&rft_id=info:pmid/23134729&rft_jstor_id=41830211&rfr_iscdi=true |