Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics

Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating volt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 2), p.055202-055202, Article 055202
Hauptverfasser: Petrov, E Yu, Kudrin, A V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055202
container_issue 5 Pt 2
container_start_page 055202
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 85
creator Petrov, E Yu
Kudrin, A V
description Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.
doi_str_mv 10.1103/PhysRevE.85.055202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186913202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186913202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-6efe908603939e510138995f6c8841166b5d2d760d2238910a59ae9ab9c2c0dd3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMotlb_gAfZo5etk6RJE29S6gcUFNHzkmZnNbKb1GRb7L93l7biaQbmeV-Yh5BLCmNKgd-8fG7TK27mYyXGIAQDdkSGVAjIGZ_K437nOudTIQbkLKUvAM64mpySAeMAE0XZkLh5jbaNoTEfHltns5Csq2vTuuBT5nxmsjK6DfrMB187jyZmEVPwpg3xtr9istGtej4LVWZDs6rx5x9dbr1pnE3n5KQydcKL_RyR9_v52-wxXzw_PM3uFrnlwNtcYoUalASuuUZBgXKltaikVWpCqZRLUbJyKqFk3TOaghHaoDZLbZmFsuQjcr3rXcXwvcbUFo1LFrufPIZ1KihVUlPe2epQtkNtDClFrIpVdI2J24JC0SsuDooLJYqd4i50te9fLxss_yIHp_wXzVJ6PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186913202</pqid></control><display><type>article</type><title>Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics</title><source>American Physical Society Journals</source><creator>Petrov, E Yu ; Kudrin, A V</creator><creatorcontrib>Petrov, E Yu ; Kudrin, A V</creatorcontrib><description>Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.85.055202</identifier><identifier>PMID: 23004812</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 2), p.055202-055202, Article 055202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-6efe908603939e510138995f6c8841166b5d2d760d2238910a59ae9ab9c2c0dd3</citedby><cites>FETCH-LOGICAL-c303t-6efe908603939e510138995f6c8841166b5d2d760d2238910a59ae9ab9c2c0dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23004812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrov, E Yu</creatorcontrib><creatorcontrib>Kudrin, A V</creatorcontrib><title>Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMotlb_gAfZo5etk6RJE29S6gcUFNHzkmZnNbKb1GRb7L93l7biaQbmeV-Yh5BLCmNKgd-8fG7TK27mYyXGIAQDdkSGVAjIGZ_K437nOudTIQbkLKUvAM64mpySAeMAE0XZkLh5jbaNoTEfHltns5Csq2vTuuBT5nxmsjK6DfrMB187jyZmEVPwpg3xtr9istGtej4LVWZDs6rx5x9dbr1pnE3n5KQydcKL_RyR9_v52-wxXzw_PM3uFrnlwNtcYoUalASuuUZBgXKltaikVWpCqZRLUbJyKqFk3TOaghHaoDZLbZmFsuQjcr3rXcXwvcbUFo1LFrufPIZ1KihVUlPe2epQtkNtDClFrIpVdI2J24JC0SsuDooLJYqd4i50te9fLxss_yIHp_wXzVJ6PA</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Petrov, E Yu</creator><creator>Kudrin, A V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201205</creationdate><title>Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics</title><author>Petrov, E Yu ; Kudrin, A V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-6efe908603939e510138995f6c8841166b5d2d760d2238910a59ae9ab9c2c0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Petrov, E Yu</creatorcontrib><creatorcontrib>Kudrin, A V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrov, E Yu</au><au>Kudrin, A V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-05</date><risdate>2012</risdate><volume>85</volume><issue>5 Pt 2</issue><spage>055202</spage><epage>055202</epage><pages>055202-055202</pages><artnum>055202</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. This is a demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.</abstract><cop>United States</cop><pmid>23004812</pmid><doi>10.1103/PhysRevE.85.055202</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 2), p.055202-055202, Article 055202
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1186913202
source American Physical Society Journals
title Electromagnetic oscillations in a driven nonlinear resonator: a description of complex nonlinear dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20oscillations%20in%20a%20driven%20nonlinear%20resonator:%20a%20description%20of%20complex%20nonlinear%20dynamics&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Petrov,%20E%20Yu&rft.date=2012-05&rft.volume=85&rft.issue=5%20Pt%202&rft.spage=055202&rft.epage=055202&rft.pages=055202-055202&rft.artnum=055202&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.85.055202&rft_dat=%3Cproquest_cross%3E1186913202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186913202&rft_id=info:pmid/23004812&rfr_iscdi=true