Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease

The molecular mechanics‐Poisson‐Boltzmann surface area (MM‐PBSA) and MM‐generalized‐Born surface area (MM‐GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2012-12, Vol.33 (32), p.2566-2580
Hauptverfasser: Oehme, Daniel P., Brownlee, Robert T. C., Wilson, David J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2580
container_issue 32
container_start_page 2566
container_title Journal of computational chemistry
container_volume 33
creator Oehme, Daniel P.
Brownlee, Robert T. C.
Wilson, David J. D.
description The molecular mechanics‐Poisson‐Boltzmann surface area (MM‐PBSA) and MM‐generalized‐Born surface area (MM‐GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters. Atomic charge methods are demonstrated to effect both the molecular dynamics (MD) simulation and MM‐PB(GB)SA binding energy calculation, with a greater effect on the MD simulation. Coefficients of determination and Spearman rank coefficients were used to quantify the performance of the MM‐PB(GB)SA methods relative to the experimental data. In general, better performance was achieved using (i) atomic charge models that produced smaller mean absolute atomic charges (Gasteiger, HF/STO‐3G and B3LYP/cc‐pVTZ), (ii) the MM‐GBSA approach over MM‐PBSA, while (iii) inclusion of entropy had a slightly positive effect on correlations with experiment. Accurate representation of the ligand protonation state was found to be important. It is demonstrated that these approaches can distinguish ligands according to binding strength, underlining the usefulness of these approaches in computer‐aided drug design. © 2012 Wiley Periodicals, Inc. Four critical aspects of the popular MM‐PBSA and MM‐GBSA approach to calculating inhibitor binding energies have been investigated for the case of HIV protease: (1) atomic charges, (2) solvation model, (3) entropy, and (4) ligand protonation state.
doi_str_mv 10.1002/jcc.23095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1178676648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818918461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-8b873d533f9eede9ec6239b02716fdcd7e6e33ea7dc1f36f941e0333af8b58c53</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EoqFw4A8gS1xaKdv6Y-1dH9uoTUtTQKK03CzHOw5ON-tgbwr59zhJ2wMSp5nD87wz0ovQe0qOKCHseG7tEeNEiRdoQImShaqrHy_RgFDFiloKuofepDQnhHAhy9dojzFFRVmyAVqfOQe2x8Fh04eFt9j-NHEGQ5xC-2B6H7ohhq6PYbkeYtM1uPWzzVjG0IduC-DUmx5wXq6vi6-nB-PTw28neOq7xnezLEOceUibExeXt1sRTIK36JUzbYJ3j3MffT8_uxldFJMv48vRyaSwgglR1NO64o3g3CmABhRYybiaElZR6RrbVCCBczBVY6nj0qmSAuGcG1dPRW0F30cHu9x8-NcKUq8XPlloW9NBWCVNaVXLSsqyzujHf9B5WMUuf7ehiCSlkipThzvKxpBSBKeX0S9MXGtK9KYPnfvQ2z4y--ExcTVdQPNMPhWQgeMd8Nu3sP5_kv40Gj1FFjvDpx7-PBsm3mtZ8Urou89jfXd1e8MmV-Ms_wUNkaJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1170604969</pqid></control><display><type>article</type><title>Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oehme, Daniel P. ; Brownlee, Robert T. C. ; Wilson, David J. D.</creator><creatorcontrib>Oehme, Daniel P. ; Brownlee, Robert T. C. ; Wilson, David J. D.</creatorcontrib><description>The molecular mechanics‐Poisson‐Boltzmann surface area (MM‐PBSA) and MM‐generalized‐Born surface area (MM‐GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters. Atomic charge methods are demonstrated to effect both the molecular dynamics (MD) simulation and MM‐PB(GB)SA binding energy calculation, with a greater effect on the MD simulation. Coefficients of determination and Spearman rank coefficients were used to quantify the performance of the MM‐PB(GB)SA methods relative to the experimental data. In general, better performance was achieved using (i) atomic charge models that produced smaller mean absolute atomic charges (Gasteiger, HF/STO‐3G and B3LYP/cc‐pVTZ), (ii) the MM‐GBSA approach over MM‐PBSA, while (iii) inclusion of entropy had a slightly positive effect on correlations with experiment. Accurate representation of the ligand protonation state was found to be important. It is demonstrated that these approaches can distinguish ligands according to binding strength, underlining the usefulness of these approaches in computer‐aided drug design. © 2012 Wiley Periodicals, Inc. Four critical aspects of the popular MM‐PBSA and MM‐GBSA approach to calculating inhibitor binding energies have been investigated for the case of HIV protease: (1) atomic charges, (2) solvation model, (3) entropy, and (4) ligand protonation state.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.23095</identifier><identifier>PMID: 22915442</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>atomic charges ; Atoms &amp; subatomic particles ; Binding sites ; Correlation analysis ; Entropy ; HIV protease ; HIV Protease - chemistry ; HIV Protease - metabolism ; Ligands ; MM-PB(GB)SA ; Molecular Dynamics Simulation ; Molecules ; protonation state ; Protons ; Simulation ; Solubility ; Surface Properties</subject><ispartof>Journal of computational chemistry, 2012-12, Vol.33 (32), p.2566-2580</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Dec 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-8b873d533f9eede9ec6239b02716fdcd7e6e33ea7dc1f36f941e0333af8b58c53</citedby><cites>FETCH-LOGICAL-c5255-8b873d533f9eede9ec6239b02716fdcd7e6e33ea7dc1f36f941e0333af8b58c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.23095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.23095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22915442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oehme, Daniel P.</creatorcontrib><creatorcontrib>Brownlee, Robert T. C.</creatorcontrib><creatorcontrib>Wilson, David J. D.</creatorcontrib><title>Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>The molecular mechanics‐Poisson‐Boltzmann surface area (MM‐PBSA) and MM‐generalized‐Born surface area (MM‐GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters. Atomic charge methods are demonstrated to effect both the molecular dynamics (MD) simulation and MM‐PB(GB)SA binding energy calculation, with a greater effect on the MD simulation. Coefficients of determination and Spearman rank coefficients were used to quantify the performance of the MM‐PB(GB)SA methods relative to the experimental data. In general, better performance was achieved using (i) atomic charge models that produced smaller mean absolute atomic charges (Gasteiger, HF/STO‐3G and B3LYP/cc‐pVTZ), (ii) the MM‐GBSA approach over MM‐PBSA, while (iii) inclusion of entropy had a slightly positive effect on correlations with experiment. Accurate representation of the ligand protonation state was found to be important. It is demonstrated that these approaches can distinguish ligands according to binding strength, underlining the usefulness of these approaches in computer‐aided drug design. © 2012 Wiley Periodicals, Inc. Four critical aspects of the popular MM‐PBSA and MM‐GBSA approach to calculating inhibitor binding energies have been investigated for the case of HIV protease: (1) atomic charges, (2) solvation model, (3) entropy, and (4) ligand protonation state.</description><subject>atomic charges</subject><subject>Atoms &amp; subatomic particles</subject><subject>Binding sites</subject><subject>Correlation analysis</subject><subject>Entropy</subject><subject>HIV protease</subject><subject>HIV Protease - chemistry</subject><subject>HIV Protease - metabolism</subject><subject>Ligands</subject><subject>MM-PB(GB)SA</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecules</subject><subject>protonation state</subject><subject>Protons</subject><subject>Simulation</subject><subject>Solubility</subject><subject>Surface Properties</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vEzEQhi0EoqFw4A8gS1xaKdv6Y-1dH9uoTUtTQKK03CzHOw5ON-tgbwr59zhJ2wMSp5nD87wz0ovQe0qOKCHseG7tEeNEiRdoQImShaqrHy_RgFDFiloKuofepDQnhHAhy9dojzFFRVmyAVqfOQe2x8Fh04eFt9j-NHEGQ5xC-2B6H7ohhq6PYbkeYtM1uPWzzVjG0IduC-DUmx5wXq6vi6-nB-PTw28neOq7xnezLEOceUibExeXt1sRTIK36JUzbYJ3j3MffT8_uxldFJMv48vRyaSwgglR1NO64o3g3CmABhRYybiaElZR6RrbVCCBczBVY6nj0qmSAuGcG1dPRW0F30cHu9x8-NcKUq8XPlloW9NBWCVNaVXLSsqyzujHf9B5WMUuf7ehiCSlkipThzvKxpBSBKeX0S9MXGtK9KYPnfvQ2z4y--ExcTVdQPNMPhWQgeMd8Nu3sP5_kv40Gj1FFjvDpx7-PBsm3mtZ8Urou89jfXd1e8MmV-Ms_wUNkaJ6</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Oehme, Daniel P.</creator><creator>Brownlee, Robert T. C.</creator><creator>Wilson, David J. D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20121215</creationdate><title>Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease</title><author>Oehme, Daniel P. ; Brownlee, Robert T. C. ; Wilson, David J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-8b873d533f9eede9ec6239b02716fdcd7e6e33ea7dc1f36f941e0333af8b58c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>atomic charges</topic><topic>Atoms &amp; subatomic particles</topic><topic>Binding sites</topic><topic>Correlation analysis</topic><topic>Entropy</topic><topic>HIV protease</topic><topic>HIV Protease - chemistry</topic><topic>HIV Protease - metabolism</topic><topic>Ligands</topic><topic>MM-PB(GB)SA</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecules</topic><topic>protonation state</topic><topic>Protons</topic><topic>Simulation</topic><topic>Solubility</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oehme, Daniel P.</creatorcontrib><creatorcontrib>Brownlee, Robert T. C.</creatorcontrib><creatorcontrib>Wilson, David J. D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oehme, Daniel P.</au><au>Brownlee, Robert T. C.</au><au>Wilson, David J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2012-12-15</date><risdate>2012</risdate><volume>33</volume><issue>32</issue><spage>2566</spage><epage>2580</epage><pages>2566-2580</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>The molecular mechanics‐Poisson‐Boltzmann surface area (MM‐PBSA) and MM‐generalized‐Born surface area (MM‐GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters. Atomic charge methods are demonstrated to effect both the molecular dynamics (MD) simulation and MM‐PB(GB)SA binding energy calculation, with a greater effect on the MD simulation. Coefficients of determination and Spearman rank coefficients were used to quantify the performance of the MM‐PB(GB)SA methods relative to the experimental data. In general, better performance was achieved using (i) atomic charge models that produced smaller mean absolute atomic charges (Gasteiger, HF/STO‐3G and B3LYP/cc‐pVTZ), (ii) the MM‐GBSA approach over MM‐PBSA, while (iii) inclusion of entropy had a slightly positive effect on correlations with experiment. Accurate representation of the ligand protonation state was found to be important. It is demonstrated that these approaches can distinguish ligands according to binding strength, underlining the usefulness of these approaches in computer‐aided drug design. © 2012 Wiley Periodicals, Inc. Four critical aspects of the popular MM‐PBSA and MM‐GBSA approach to calculating inhibitor binding energies have been investigated for the case of HIV protease: (1) atomic charges, (2) solvation model, (3) entropy, and (4) ligand protonation state.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22915442</pmid><doi>10.1002/jcc.23095</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2012-12, Vol.33 (32), p.2566-2580
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_1178676648
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects atomic charges
Atoms & subatomic particles
Binding sites
Correlation analysis
Entropy
HIV protease
HIV Protease - chemistry
HIV Protease - metabolism
Ligands
MM-PB(GB)SA
Molecular Dynamics Simulation
Molecules
protonation state
Protons
Simulation
Solubility
Surface Properties
title Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20atomic%20charge,%20solvation,%20entropy,%20and%20ligand%20protonation%20state%20on%20MM-PB(GB)SA%20binding%20energies%20of%20HIV%20protease&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Oehme,%20Daniel%20P.&rft.date=2012-12-15&rft.volume=33&rft.issue=32&rft.spage=2566&rft.epage=2580&rft.pages=2566-2580&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.23095&rft_dat=%3Cproquest_cross%3E2818918461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1170604969&rft_id=info:pmid/22915442&rfr_iscdi=true