Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey
Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models fo...
Gespeichert in:
Veröffentlicht in: | Water and environment journal : WEJ 2012-12, Vol.26 (4), p.567-576 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 567 |
container_title | Water and environment journal : WEJ |
container_volume | 26 |
creator | Can, İbrahim Tosunoğlu, Fatih Kahya, Ercan |
description | Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level. |
doi_str_mv | 10.1111/j.1747-6593.2012.00337.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171887042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071030011</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3077-6ae03234524eaffffbab91a398a97012f52a500c04404a82e7822efa6e07f62c3</originalsourceid><addsrcrecordid>eNpdUc1u2zAMNoYNWNftHQT0skPj6s-WPfQy9HdBkR6aoUeBcehUiWN1kpXET9C9115scjLkMB5EQvw-kh-ZJITRlEW7WKZMSTXKs1KknDKeUiqESnfvkpNj4v0xLrKPySfvl5RKVeb5SfL7GkzTE985hHXd2C1Z2zk2jWkXJPjhhdBZhwuH3psNxvRm_7tBBwsk0M4JuM7UpjLQkBaD27tua93KH4r5b6QCj7FJmPfE1uTPm3XhhcwgNjgn0-BW2H9OPtTQePzyz58mP29vplf3o4fHux9X3x9GRlAVJQBSwYXMuESoo81gVjIQZQGlivLrjENGaUWlpBIKjqrgHGvIkao655U4Tb4e6r46-yug7_Ta-CoqhhZt8JoxxYpCUckj9Ow_6NIG18bpNJOCD9sWA-rygNqaBnv96swaXK8Z1cN99FIPq9fDGfTA0Pv76J1-vhnHINJHB7rxHe6OdHArnSuhMv08udNqMhlLOh3rJ_EXNWWXyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432201232</pqid></control><display><type>article</type><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><source>Access via Wiley Online Library</source><creator>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</creator><creatorcontrib>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</creatorcontrib><description>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/j.1747-6593.2012.00337.x</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>artificial neural networks ; autoregressive moving average model ; streamflow ; Çoruh basin</subject><ispartof>Water and environment journal : WEJ, 2012-12, Vol.26 (4), p.567-576</ispartof><rights>2012 CIWEM</rights><rights>Water and Environment Journal © 2012 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1747-6593.2012.00337.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1747-6593.2012.00337.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Can, İbrahim</creatorcontrib><creatorcontrib>Tosunoğlu, Fatih</creatorcontrib><creatorcontrib>Kahya, Ercan</creatorcontrib><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><title>Water and environment journal : WEJ</title><addtitle>Water Environ J</addtitle><description>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</description><subject>artificial neural networks</subject><subject>autoregressive moving average model</subject><subject>streamflow</subject><subject>Çoruh basin</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdUc1u2zAMNoYNWNftHQT0skPj6s-WPfQy9HdBkR6aoUeBcehUiWN1kpXET9C9115scjLkMB5EQvw-kh-ZJITRlEW7WKZMSTXKs1KknDKeUiqESnfvkpNj4v0xLrKPySfvl5RKVeb5SfL7GkzTE985hHXd2C1Z2zk2jWkXJPjhhdBZhwuH3psNxvRm_7tBBwsk0M4JuM7UpjLQkBaD27tua93KH4r5b6QCj7FJmPfE1uTPm3XhhcwgNjgn0-BW2H9OPtTQePzyz58mP29vplf3o4fHux9X3x9GRlAVJQBSwYXMuESoo81gVjIQZQGlivLrjENGaUWlpBIKjqrgHGvIkao655U4Tb4e6r46-yug7_Ta-CoqhhZt8JoxxYpCUckj9Ow_6NIG18bpNJOCD9sWA-rygNqaBnv96swaXK8Z1cN99FIPq9fDGfTA0Pv76J1-vhnHINJHB7rxHe6OdHArnSuhMv08udNqMhlLOh3rJ_EXNWWXyg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Can, İbrahim</creator><creator>Tosunoğlu, Fatih</creator><creator>Kahya, Ercan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201212</creationdate><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><author>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3077-6ae03234524eaffffbab91a398a97012f52a500c04404a82e7822efa6e07f62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial neural networks</topic><topic>autoregressive moving average model</topic><topic>streamflow</topic><topic>Çoruh basin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Can, İbrahim</creatorcontrib><creatorcontrib>Tosunoğlu, Fatih</creatorcontrib><creatorcontrib>Kahya, Ercan</creatorcontrib><collection>Istex</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Can, İbrahim</au><au>Tosunoğlu, Fatih</au><au>Kahya, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</atitle><jtitle>Water and environment journal : WEJ</jtitle><addtitle>Water Environ J</addtitle><date>2012-12</date><risdate>2012</risdate><volume>26</volume><issue>4</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1747-6593.2012.00337.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6585 |
ispartof | Water and environment journal : WEJ, 2012-12, Vol.26 (4), p.567-576 |
issn | 1747-6585 1747-6593 |
language | eng |
recordid | cdi_proquest_miscellaneous_1171887042 |
source | Access via Wiley Online Library |
subjects | artificial neural networks autoregressive moving average model streamflow Çoruh basin |
title | Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20streamflow%20modelling%20using%20autoregressive%20moving%20average%20and%20artificial%20neural%20networks%20models:%20case%20study%20of%20%C3%87oruh%20basin,%20Turkey&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Can,%20%C4%B0brahim&rft.date=2012-12&rft.volume=26&rft.issue=4&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/j.1747-6593.2012.00337.x&rft_dat=%3Cproquest_wiley%3E3071030011%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432201232&rft_id=info:pmid/&rfr_iscdi=true |