Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey

Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water and environment journal : WEJ 2012-12, Vol.26 (4), p.567-576
Hauptverfasser: Can, İbrahim, Tosunoğlu, Fatih, Kahya, Ercan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 567
container_title Water and environment journal : WEJ
container_volume 26
creator Can, İbrahim
Tosunoğlu, Fatih
Kahya, Ercan
description Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.
doi_str_mv 10.1111/j.1747-6593.2012.00337.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171887042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071030011</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3077-6ae03234524eaffffbab91a398a97012f52a500c04404a82e7822efa6e07f62c3</originalsourceid><addsrcrecordid>eNpdUc1u2zAMNoYNWNftHQT0skPj6s-WPfQy9HdBkR6aoUeBcehUiWN1kpXET9C9115scjLkMB5EQvw-kh-ZJITRlEW7WKZMSTXKs1KknDKeUiqESnfvkpNj4v0xLrKPySfvl5RKVeb5SfL7GkzTE985hHXd2C1Z2zk2jWkXJPjhhdBZhwuH3psNxvRm_7tBBwsk0M4JuM7UpjLQkBaD27tua93KH4r5b6QCj7FJmPfE1uTPm3XhhcwgNjgn0-BW2H9OPtTQePzyz58mP29vplf3o4fHux9X3x9GRlAVJQBSwYXMuESoo81gVjIQZQGlivLrjENGaUWlpBIKjqrgHGvIkao655U4Tb4e6r46-yug7_Ta-CoqhhZt8JoxxYpCUckj9Ow_6NIG18bpNJOCD9sWA-rygNqaBnv96swaXK8Z1cN99FIPq9fDGfTA0Pv76J1-vhnHINJHB7rxHe6OdHArnSuhMv08udNqMhlLOh3rJ_EXNWWXyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432201232</pqid></control><display><type>article</type><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><source>Access via Wiley Online Library</source><creator>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</creator><creatorcontrib>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</creatorcontrib><description>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</description><identifier>ISSN: 1747-6585</identifier><identifier>EISSN: 1747-6593</identifier><identifier>DOI: 10.1111/j.1747-6593.2012.00337.x</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>artificial neural networks ; autoregressive moving average model ; streamflow ; Çoruh basin</subject><ispartof>Water and environment journal : WEJ, 2012-12, Vol.26 (4), p.567-576</ispartof><rights>2012 CIWEM</rights><rights>Water and Environment Journal © 2012 CIWEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1747-6593.2012.00337.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1747-6593.2012.00337.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Can, İbrahim</creatorcontrib><creatorcontrib>Tosunoğlu, Fatih</creatorcontrib><creatorcontrib>Kahya, Ercan</creatorcontrib><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><title>Water and environment journal : WEJ</title><addtitle>Water Environ J</addtitle><description>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</description><subject>artificial neural networks</subject><subject>autoregressive moving average model</subject><subject>streamflow</subject><subject>Çoruh basin</subject><issn>1747-6585</issn><issn>1747-6593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdUc1u2zAMNoYNWNftHQT0skPj6s-WPfQy9HdBkR6aoUeBcehUiWN1kpXET9C9115scjLkMB5EQvw-kh-ZJITRlEW7WKZMSTXKs1KknDKeUiqESnfvkpNj4v0xLrKPySfvl5RKVeb5SfL7GkzTE985hHXd2C1Z2zk2jWkXJPjhhdBZhwuH3psNxvRm_7tBBwsk0M4JuM7UpjLQkBaD27tua93KH4r5b6QCj7FJmPfE1uTPm3XhhcwgNjgn0-BW2H9OPtTQePzyz58mP29vplf3o4fHux9X3x9GRlAVJQBSwYXMuESoo81gVjIQZQGlivLrjENGaUWlpBIKjqrgHGvIkao655U4Tb4e6r46-yug7_Ta-CoqhhZt8JoxxYpCUckj9Ow_6NIG18bpNJOCD9sWA-rygNqaBnv96swaXK8Z1cN99FIPq9fDGfTA0Pv76J1-vhnHINJHB7rxHe6OdHArnSuhMv08udNqMhlLOh3rJ_EXNWWXyg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Can, İbrahim</creator><creator>Tosunoğlu, Fatih</creator><creator>Kahya, Ercan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201212</creationdate><title>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</title><author>Can, İbrahim ; Tosunoğlu, Fatih ; Kahya, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3077-6ae03234524eaffffbab91a398a97012f52a500c04404a82e7822efa6e07f62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial neural networks</topic><topic>autoregressive moving average model</topic><topic>streamflow</topic><topic>Çoruh basin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Can, İbrahim</creatorcontrib><creatorcontrib>Tosunoğlu, Fatih</creatorcontrib><creatorcontrib>Kahya, Ercan</creatorcontrib><collection>Istex</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water and environment journal : WEJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Can, İbrahim</au><au>Tosunoğlu, Fatih</au><au>Kahya, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey</atitle><jtitle>Water and environment journal : WEJ</jtitle><addtitle>Water Environ J</addtitle><date>2012-12</date><risdate>2012</risdate><volume>26</volume><issue>4</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>1747-6585</issn><eissn>1747-6593</eissn><abstract>Streamflow modelling is a quite important issue for water resources system planning and management projects, such as dam construction, reservoir operation and flood control. This study demonstrates the application of artificial neural networks (ANN) and autoregressive moving average (ARMA) models for modelling daily streamflow in Çoruh basin, Turkey, where there are numerous highly critical power plants either under construction or being projected. Daily streamflow records from nine gauging stations located in the basin were used in this study. In the first phase of our study, ANN and ARMA models were obtained using daily streamflow. In the second phase, 100 synthetic streamflow series were generated using previously determined ANN and ARMA models in order to ensure the preservation of main statistical characteristics of the historical time series. The results have showed that the historical time series have similar statistical parameters to those of the generated time series at 95% confidence level.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1747-6593.2012.00337.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1747-6585
ispartof Water and environment journal : WEJ, 2012-12, Vol.26 (4), p.567-576
issn 1747-6585
1747-6593
language eng
recordid cdi_proquest_miscellaneous_1171887042
source Access via Wiley Online Library
subjects artificial neural networks
autoregressive moving average model
streamflow
Çoruh basin
title Daily streamflow modelling using autoregressive moving average and artificial neural networks models: case study of Çoruh basin, Turkey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20streamflow%20modelling%20using%20autoregressive%20moving%20average%20and%20artificial%20neural%20networks%20models:%20case%20study%20of%20%C3%87oruh%20basin,%20Turkey&rft.jtitle=Water%20and%20environment%20journal%20:%20WEJ&rft.au=Can,%20%C4%B0brahim&rft.date=2012-12&rft.volume=26&rft.issue=4&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=1747-6585&rft.eissn=1747-6593&rft_id=info:doi/10.1111/j.1747-6593.2012.00337.x&rft_dat=%3Cproquest_wiley%3E3071030011%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432201232&rft_id=info:pmid/&rfr_iscdi=true