The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (P...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2012-11, Vol.423 (4), p.503-514 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 4 |
container_start_page | 503 |
container_title | Journal of molecular biology |
container_volume | 423 |
creator | Infantes, Lourdes Otero, Lisandro Horacio Beassoni, Paola Rita Boetsch, Cristhian Lisa, Angela Teresita Domenech, Carlos Eduardo Albert, Armando |
description | Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2‐[bis(2‐hydroxyethyl)amino]‐2‐(hydroxymethyl)propane‐1,3‐diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site‐directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three‐dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
[Display omitted]
► P. aeruginosa PlcH and PchP coordinately degrade the phospholipids of the host cell membrane. ► PchP contains two domains involved in substrate hydrolysis and recognition. ► An additional substrate binding inhibitory site blocks products on the active site. ► PchP activity is based in the interplay between sites and domains. ► We provide the basis for using PchP as a target for drug design against pathogens. |
doi_str_mv | 10.1016/j.jmb.2012.07.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171875957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283612006080</els_id><sourcerecordid>1171875957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2728669863c0aadde92fdb007d20174c8235a280a6f8c2c6cb14b0a24d68d01e3</originalsourceid><addsrcrecordid>eNp9UcFu1DAUtBCILoUP4IJ85JLw7CSOAye0LbRSq1ZqOVuO_UK8SuzFTiqFD-n3krJLj5ye3tPMPM0MIe8Z5AyY-LTLd2Obc2A8hzoHXr4gGwayyaQo5EuyAeA847IQJ-RNSjsAqIpSviYnnDecg6g25PG-R3o3xdlMc9QDPQujdj7R0NHbhLMNY_A6UY1x_ul8SJre9iHt-xCXwfRhcB6PFz3phHQbwh6jnpA6T-_mNk1_l4vFxjAsyaXPtDh7fohUe0vP_e9l1JMz9BpNr71L41vyqtNDwnfHeUp-fDu_315kVzffL7dfrzJTSDFlvOZSiGa1a0Bra7HhnW0BaruGUpdG8qLSXIIWnTTcCNOysgXNSyukBYbFKfl40N3H8GvGNKnRJYPDoD2GOSnGaibrqqnqFcoOUBNDShE7tY9u1HFRDNRTHWqn1jrUUx0KarXWsXI-HOXndkT7zPiX_wr4cgDgavLBYVTJOPQGrYtoJmWD-4_8H4_mnhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171875957</pqid></control><display><type>article</type><title>The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Infantes, Lourdes ; Otero, Lisandro Horacio ; Beassoni, Paola Rita ; Boetsch, Cristhian ; Lisa, Angela Teresita ; Domenech, Carlos Eduardo ; Albert, Armando</creator><creatorcontrib>Infantes, Lourdes ; Otero, Lisandro Horacio ; Beassoni, Paola Rita ; Boetsch, Cristhian ; Lisa, Angela Teresita ; Domenech, Carlos Eduardo ; Albert, Armando</creatorcontrib><description>Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2‐[bis(2‐hydroxyethyl)amino]‐2‐(hydroxymethyl)propane‐1,3‐diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site‐directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three‐dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
[Display omitted]
► P. aeruginosa PlcH and PchP coordinately degrade the phospholipids of the host cell membrane. ► PchP contains two domains involved in substrate hydrolysis and recognition. ► An additional substrate binding inhibitory site blocks products on the active site. ► PchP activity is based in the interplay between sites and domains. ► We provide the basis for using PchP as a target for drug design against pathogens.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2012.07.024</identifier><identifier>PMID: 22922065</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Binding Sites ; Biocatalysis ; Catalysis ; Catalytic Domain ; Cell membranes ; Choline ; Choline - metabolism ; Crystal structure ; crystallography ; Crystallography, X-Ray ; Data processing ; Enzymes ; HAD superfamily ; Hydrolases - chemistry ; Hydrolases - metabolism ; Hydrolysis ; Lecithin ; Models, Molecular ; Mutagenesis, Site-Directed ; Opportunist infection ; Pathogens ; Phosphate ; Phospholipase C ; phosphorylcholine ; Phosphorylcholine - chemistry ; Phosphorylcholine - metabolism ; Protein Folding ; Protein Structure, Tertiary ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; Pseudomonas aeruginosa - metabolism ; Site-directed mutagenesis ; structural enzymology ; Tromethamine - analogs & derivatives ; Tromethamine - metabolism ; Type C Phospholipases - metabolism</subject><ispartof>Journal of molecular biology, 2012-11, Vol.423 (4), p.503-514</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2728669863c0aadde92fdb007d20174c8235a280a6f8c2c6cb14b0a24d68d01e3</citedby><cites>FETCH-LOGICAL-c386t-2728669863c0aadde92fdb007d20174c8235a280a6f8c2c6cb14b0a24d68d01e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2012.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22922065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Infantes, Lourdes</creatorcontrib><creatorcontrib>Otero, Lisandro Horacio</creatorcontrib><creatorcontrib>Beassoni, Paola Rita</creatorcontrib><creatorcontrib>Boetsch, Cristhian</creatorcontrib><creatorcontrib>Lisa, Angela Teresita</creatorcontrib><creatorcontrib>Domenech, Carlos Eduardo</creatorcontrib><creatorcontrib>Albert, Armando</creatorcontrib><title>The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2‐[bis(2‐hydroxyethyl)amino]‐2‐(hydroxymethyl)propane‐1,3‐diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site‐directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three‐dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
[Display omitted]
► P. aeruginosa PlcH and PchP coordinately degrade the phospholipids of the host cell membrane. ► PchP contains two domains involved in substrate hydrolysis and recognition. ► An additional substrate binding inhibitory site blocks products on the active site. ► PchP activity is based in the interplay between sites and domains. ► We provide the basis for using PchP as a target for drug design against pathogens.</description><subject>Binding Sites</subject><subject>Biocatalysis</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cell membranes</subject><subject>Choline</subject><subject>Choline - metabolism</subject><subject>Crystal structure</subject><subject>crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Data processing</subject><subject>Enzymes</subject><subject>HAD superfamily</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Lecithin</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Opportunist infection</subject><subject>Pathogens</subject><subject>Phosphate</subject><subject>Phospholipase C</subject><subject>phosphorylcholine</subject><subject>Phosphorylcholine - chemistry</subject><subject>Phosphorylcholine - metabolism</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Site-directed mutagenesis</subject><subject>structural enzymology</subject><subject>Tromethamine - analogs & derivatives</subject><subject>Tromethamine - metabolism</subject><subject>Type C Phospholipases - metabolism</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAUtBCILoUP4IJ85JLw7CSOAye0LbRSq1ZqOVuO_UK8SuzFTiqFD-n3krJLj5ye3tPMPM0MIe8Z5AyY-LTLd2Obc2A8hzoHXr4gGwayyaQo5EuyAeA847IQJ-RNSjsAqIpSviYnnDecg6g25PG-R3o3xdlMc9QDPQujdj7R0NHbhLMNY_A6UY1x_ul8SJre9iHt-xCXwfRhcB6PFz3phHQbwh6jnpA6T-_mNk1_l4vFxjAsyaXPtDh7fohUe0vP_e9l1JMz9BpNr71L41vyqtNDwnfHeUp-fDu_315kVzffL7dfrzJTSDFlvOZSiGa1a0Bra7HhnW0BaruGUpdG8qLSXIIWnTTcCNOysgXNSyukBYbFKfl40N3H8GvGNKnRJYPDoD2GOSnGaibrqqnqFcoOUBNDShE7tY9u1HFRDNRTHWqn1jrUUx0KarXWsXI-HOXndkT7zPiX_wr4cgDgavLBYVTJOPQGrYtoJmWD-4_8H4_mnhs</recordid><startdate>20121102</startdate><enddate>20121102</enddate><creator>Infantes, Lourdes</creator><creator>Otero, Lisandro Horacio</creator><creator>Beassoni, Paola Rita</creator><creator>Boetsch, Cristhian</creator><creator>Lisa, Angela Teresita</creator><creator>Domenech, Carlos Eduardo</creator><creator>Albert, Armando</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20121102</creationdate><title>The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism</title><author>Infantes, Lourdes ; Otero, Lisandro Horacio ; Beassoni, Paola Rita ; Boetsch, Cristhian ; Lisa, Angela Teresita ; Domenech, Carlos Eduardo ; Albert, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2728669863c0aadde92fdb007d20174c8235a280a6f8c2c6cb14b0a24d68d01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Binding Sites</topic><topic>Biocatalysis</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cell membranes</topic><topic>Choline</topic><topic>Choline - metabolism</topic><topic>Crystal structure</topic><topic>crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Data processing</topic><topic>Enzymes</topic><topic>HAD superfamily</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Lecithin</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Opportunist infection</topic><topic>Pathogens</topic><topic>Phosphate</topic><topic>Phospholipase C</topic><topic>phosphorylcholine</topic><topic>Phosphorylcholine - chemistry</topic><topic>Phosphorylcholine - metabolism</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Site-directed mutagenesis</topic><topic>structural enzymology</topic><topic>Tromethamine - analogs & derivatives</topic><topic>Tromethamine - metabolism</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Infantes, Lourdes</creatorcontrib><creatorcontrib>Otero, Lisandro Horacio</creatorcontrib><creatorcontrib>Beassoni, Paola Rita</creatorcontrib><creatorcontrib>Boetsch, Cristhian</creatorcontrib><creatorcontrib>Lisa, Angela Teresita</creatorcontrib><creatorcontrib>Domenech, Carlos Eduardo</creatorcontrib><creatorcontrib>Albert, Armando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Infantes, Lourdes</au><au>Otero, Lisandro Horacio</au><au>Beassoni, Paola Rita</au><au>Boetsch, Cristhian</au><au>Lisa, Angela Teresita</au><au>Domenech, Carlos Eduardo</au><au>Albert, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2012-11-02</date><risdate>2012</risdate><volume>423</volume><issue>4</issue><spage>503</spage><epage>514</epage><pages>503-514</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen. It colonizes different tissues by the utilization of diverse mechanisms. One of these may involve the breakdown of the host cell membrane through the sequential action of hemolytic phospholipase C and phosphorylcholine phosphatase (PchP). The action of hemolytic phospholipase C on phosphatidylcholine produces phosphorylcholine, which is hydrolyzed to choline (Cho) and inorganic phosphate by PchP. The available biochemical data on this enzyme demonstrate the involvement of two Cho-binding sites in the catalytic cycle and in enzyme regulation. The crystal structure of P. aeruginosa PchP has been determined. It folds into three structural domains. The first domain harbors all the residues involved in catalysis and is well conserved among the haloacid dehalogenase superfamily of proteins. The second domain is characteristic of PchP and is involved in the recognition of the Cho moiety of the substrate. The third domain stabilizes the relative position of the other two. Fortuitously, the crystal structure of PchP captures molecules of Bistris (2‐[bis(2‐hydroxyethyl)amino]‐2‐(hydroxymethyl)propane‐1,3‐diol) at the active site and at an additional site. This represents two catalytically relevant complexes with just one or two inhibitory Bistris molecules and provides the basis of the PchP function and regulation. Site‐directed mutagenesis along with biochemical experiments corroborates the structural observations and demonstrates the interplay between different sites for Cho recognition and inhibition. The structural comparison of PchP with other phosphatases of the haloacid dehalogenase family provides a three‐dimensional picture of the conserved catalytic cycle and the structural basis for the recognition of the diverse substrate molecules.
[Display omitted]
► P. aeruginosa PlcH and PchP coordinately degrade the phospholipids of the host cell membrane. ► PchP contains two domains involved in substrate hydrolysis and recognition. ► An additional substrate binding inhibitory site blocks products on the active site. ► PchP activity is based in the interplay between sites and domains. ► We provide the basis for using PchP as a target for drug design against pathogens.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22922065</pmid><doi>10.1016/j.jmb.2012.07.024</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2012-11, Vol.423 (4), p.503-514 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1171875957 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Binding Sites Biocatalysis Catalysis Catalytic Domain Cell membranes Choline Choline - metabolism Crystal structure crystallography Crystallography, X-Ray Data processing Enzymes HAD superfamily Hydrolases - chemistry Hydrolases - metabolism Hydrolysis Lecithin Models, Molecular Mutagenesis, Site-Directed Opportunist infection Pathogens Phosphate Phospholipase C phosphorylcholine Phosphorylcholine - chemistry Phosphorylcholine - metabolism Protein Folding Protein Structure, Tertiary Pseudomonas aeruginosa Pseudomonas aeruginosa - enzymology Pseudomonas aeruginosa - metabolism Site-directed mutagenesis structural enzymology Tromethamine - analogs & derivatives Tromethamine - metabolism Type C Phospholipases - metabolism |
title | The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structural%20Domains%20of%20Pseudomonas%20aeruginosa%20Phosphorylcholine%20Phosphatase%20Cooperate%20in%20Substrate%20Hydrolysis:%203D%20Structure%20and%20Enzymatic%20Mechanism&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Infantes,%20Lourdes&rft.date=2012-11-02&rft.volume=423&rft.issue=4&rft.spage=503&rft.epage=514&rft.pages=503-514&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2012.07.024&rft_dat=%3Cproquest_cross%3E1171875957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171875957&rft_id=info:pmid/22922065&rft_els_id=S0022283612006080&rfr_iscdi=true |