Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska

North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mammalogy 2012-10, Vol.93 (5), p.1318-1330
Hauptverfasser: Roffler, Gretchen H., Adams, Layne G., Talbot, Sandra L., Sage, George K., Dale, Bruce W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 5
container_start_page 1318
container_title Journal of mammalogy
container_volume 93
creator Roffler, Gretchen H.
Adams, Layne G.
Talbot, Sandra L.
Sage, George K.
Dale, Bruce W.
description North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FST = 0.041, P < 0.001). Although the Mentasta and Nelchina herds exhibit distinct population dynamics and physical characteristics, they demonstrate evidence of gene flow and thus function as a genetic metapopulation.
doi_str_mv 10.1644/11-MAMM-A-275.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171873565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23321942</jstor_id><sourcerecordid>23321942</sourcerecordid><originalsourceid>FETCH-LOGICAL-b457t-9089902d49b17e8d1de6f1c6edb365d15105b0109009f3b7b518fb9cb43c20543</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhQtRsB1duxIDIripmdw8Kl3LYhgfMI2gzrrI41Z32uqkTaoG_AP-blPUoODGTRJyvnPugVtVL4FeQiPEFUC963a7uquZkpfwqNqAFLIuB3tcbShlrGZcsafVs5yPlFKpGN1Uv77osEcS7zGN-kx0cMQH5--9m_VITuX_hGHKxM3Jhz0xCdEtj4w6x1DYYZwxWCR7DDh5SxKOevIx5IM_ZxIHYnXyJs7kgMnlYiA5ztOhtiU2lRHdqPN3_bx6Mugx44uH-6K6e3_z7fpjffv5w6fr7rY2Qqqpbum2bSlzojWgcOvAYTOAbdAZ3kgHEqg0FGhLaTtwo4yE7WBaawS3jErBL6p3a-45xR8z5qk_-WxxHHXAOOceQMFWcdnIgr75Bz3GOYXSrlCCc-CMt4W6WimbYs4Jh_6c_Emnnz3QftlLgftlL33Xl730UBxvH3J1tnockg7W5z821ggFgi1VX63cMU8x_dU5Z9AKVvTXqz7o2Ot9Khl3XxmFhlKQLaiFqFfC-BgD_rfZbymZr9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1143313239</pqid></control><display><type>article</type><title>Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska</title><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Roffler, Gretchen H. ; Adams, Layne G. ; Talbot, Sandra L. ; Sage, George K. ; Dale, Bruce W.</creator><creatorcontrib>Roffler, Gretchen H. ; Adams, Layne G. ; Talbot, Sandra L. ; Sage, George K. ; Dale, Bruce W.</creatorcontrib><description>North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FST = 0.041, P &lt; 0.001). Although the Mentasta and Nelchina herds exhibit distinct population dynamics and physical characteristics, they demonstrate evidence of gene flow and thus function as a genetic metapopulation.</description><identifier>ISSN: 0022-2372</identifier><identifier>ISSN: 1545-1542</identifier><identifier>EISSN: 1545-1542</identifier><identifier>DOI: 10.1644/11-MAMM-A-275.1</identifier><identifier>CODEN: JOMAAL</identifier><language>eng</language><publisher>Lawrence, KS: American Society of Mammalogists</publisher><subject>Bayesian analysis ; Biological and medical sciences ; Breeding seasons ; Calving ; Caribou ; Caribous ; Demography ; Deoxyribonucleic acid ; Differentiation ; dispersal ; DNA ; Ecological genetics ; Emigration ; Evolutionary genetics ; FEATURE ARTICLES ; female philopatry ; Females ; Fundamental and applied biological sciences. Psychology ; Gene flow ; Genes ; Genetic relationship ; genetic structure ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Haplotypes ; Herds ; Mammalia ; metapopulation ; Metapopulations ; microsatellite ; Microsatellites ; Mitochondrial DNA ; mitochondrial DNA (mtDNA) ; Philopatry ; Physical characteristics ; Population dynamics ; Population genetics ; Population genetics, reproduction patterns ; Rangifer tarandus ; Telemetry ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution ; Winter</subject><ispartof>Journal of mammalogy, 2012-10, Vol.93 (5), p.1318-1330</ispartof><rights>2012 American Society of Mammalogists</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Allen Press Publishing Services Oct 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b457t-9089902d49b17e8d1de6f1c6edb365d15105b0109009f3b7b518fb9cb43c20543</citedby><cites>FETCH-LOGICAL-b457t-9089902d49b17e8d1de6f1c6edb365d15105b0109009f3b7b518fb9cb43c20543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23321942$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23321942$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26471424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roffler, Gretchen H.</creatorcontrib><creatorcontrib>Adams, Layne G.</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><creatorcontrib>Sage, George K.</creatorcontrib><creatorcontrib>Dale, Bruce W.</creatorcontrib><title>Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska</title><title>Journal of mammalogy</title><description>North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FST = 0.041, P &lt; 0.001). Although the Mentasta and Nelchina herds exhibit distinct population dynamics and physical characteristics, they demonstrate evidence of gene flow and thus function as a genetic metapopulation.</description><subject>Bayesian analysis</subject><subject>Biological and medical sciences</subject><subject>Breeding seasons</subject><subject>Calving</subject><subject>Caribou</subject><subject>Caribous</subject><subject>Demography</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation</subject><subject>dispersal</subject><subject>DNA</subject><subject>Ecological genetics</subject><subject>Emigration</subject><subject>Evolutionary genetics</subject><subject>FEATURE ARTICLES</subject><subject>female philopatry</subject><subject>Females</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene flow</subject><subject>Genes</subject><subject>Genetic relationship</subject><subject>genetic structure</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Haplotypes</subject><subject>Herds</subject><subject>Mammalia</subject><subject>metapopulation</subject><subject>Metapopulations</subject><subject>microsatellite</subject><subject>Microsatellites</subject><subject>Mitochondrial DNA</subject><subject>mitochondrial DNA (mtDNA)</subject><subject>Philopatry</subject><subject>Physical characteristics</subject><subject>Population dynamics</subject><subject>Population genetics</subject><subject>Population genetics, reproduction patterns</subject><subject>Rangifer tarandus</subject><subject>Telemetry</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><subject>Winter</subject><issn>0022-2372</issn><issn>1545-1542</issn><issn>1545-1542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuLFDEUhQtRsB1duxIDIripmdw8Kl3LYhgfMI2gzrrI41Z32uqkTaoG_AP-blPUoODGTRJyvnPugVtVL4FeQiPEFUC963a7uquZkpfwqNqAFLIuB3tcbShlrGZcsafVs5yPlFKpGN1Uv77osEcS7zGN-kx0cMQH5--9m_VITuX_hGHKxM3Jhz0xCdEtj4w6x1DYYZwxWCR7DDh5SxKOevIx5IM_ZxIHYnXyJs7kgMnlYiA5ztOhtiU2lRHdqPN3_bx6Mugx44uH-6K6e3_z7fpjffv5w6fr7rY2Qqqpbum2bSlzojWgcOvAYTOAbdAZ3kgHEqg0FGhLaTtwo4yE7WBaawS3jErBL6p3a-45xR8z5qk_-WxxHHXAOOceQMFWcdnIgr75Bz3GOYXSrlCCc-CMt4W6WimbYs4Jh_6c_Emnnz3QftlLgftlL33Xl730UBxvH3J1tnockg7W5z821ggFgi1VX63cMU8x_dU5Z9AKVvTXqz7o2Ot9Khl3XxmFhlKQLaiFqFfC-BgD_rfZbymZr9w</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Roffler, Gretchen H.</creator><creator>Adams, Layne G.</creator><creator>Talbot, Sandra L.</creator><creator>Sage, George K.</creator><creator>Dale, Bruce W.</creator><general>American Society of Mammalogists</general><general>Allen Press Publishing Services</general><general>Allen Press</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope></search><sort><creationdate>20121001</creationdate><title>Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska</title><author>Roffler, Gretchen H. ; Adams, Layne G. ; Talbot, Sandra L. ; Sage, George K. ; Dale, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b457t-9089902d49b17e8d1de6f1c6edb365d15105b0109009f3b7b518fb9cb43c20543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayesian analysis</topic><topic>Biological and medical sciences</topic><topic>Breeding seasons</topic><topic>Calving</topic><topic>Caribou</topic><topic>Caribous</topic><topic>Demography</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation</topic><topic>dispersal</topic><topic>DNA</topic><topic>Ecological genetics</topic><topic>Emigration</topic><topic>Evolutionary genetics</topic><topic>FEATURE ARTICLES</topic><topic>female philopatry</topic><topic>Females</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene flow</topic><topic>Genes</topic><topic>Genetic relationship</topic><topic>genetic structure</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Haplotypes</topic><topic>Herds</topic><topic>Mammalia</topic><topic>metapopulation</topic><topic>Metapopulations</topic><topic>microsatellite</topic><topic>Microsatellites</topic><topic>Mitochondrial DNA</topic><topic>mitochondrial DNA (mtDNA)</topic><topic>Philopatry</topic><topic>Physical characteristics</topic><topic>Population dynamics</topic><topic>Population genetics</topic><topic>Population genetics, reproduction patterns</topic><topic>Rangifer tarandus</topic><topic>Telemetry</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roffler, Gretchen H.</creatorcontrib><creatorcontrib>Adams, Layne G.</creatorcontrib><creatorcontrib>Talbot, Sandra L.</creatorcontrib><creatorcontrib>Sage, George K.</creatorcontrib><creatorcontrib>Dale, Bruce W.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><jtitle>Journal of mammalogy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roffler, Gretchen H.</au><au>Adams, Layne G.</au><au>Talbot, Sandra L.</au><au>Sage, George K.</au><au>Dale, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska</atitle><jtitle>Journal of mammalogy</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>93</volume><issue>5</issue><spage>1318</spage><epage>1330</epage><pages>1318-1330</pages><issn>0022-2372</issn><issn>1545-1542</issn><eissn>1545-1542</eissn><coden>JOMAAL</coden><abstract>North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FST = 0.041, P &lt; 0.001). Although the Mentasta and Nelchina herds exhibit distinct population dynamics and physical characteristics, they demonstrate evidence of gene flow and thus function as a genetic metapopulation.</abstract><cop>Lawrence, KS</cop><pub>American Society of Mammalogists</pub><doi>10.1644/11-MAMM-A-275.1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2372
ispartof Journal of mammalogy, 2012-10, Vol.93 (5), p.1318-1330
issn 0022-2372
1545-1542
1545-1542
language eng
recordid cdi_proquest_miscellaneous_1171873565
source JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Bayesian analysis
Biological and medical sciences
Breeding seasons
Calving
Caribou
Caribous
Demography
Deoxyribonucleic acid
Differentiation
dispersal
DNA
Ecological genetics
Emigration
Evolutionary genetics
FEATURE ARTICLES
female philopatry
Females
Fundamental and applied biological sciences. Psychology
Gene flow
Genes
Genetic relationship
genetic structure
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Haplotypes
Herds
Mammalia
metapopulation
Metapopulations
microsatellite
Microsatellites
Mitochondrial DNA
mitochondrial DNA (mtDNA)
Philopatry
Physical characteristics
Population dynamics
Population genetics
Population genetics, reproduction patterns
Rangifer tarandus
Telemetry
Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution
Winter
title Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Range%20overlap%20and%20individual%20movements%20during%20breeding%20season%20influence%20genetic%20relationships%20of%20caribou%20herds%20in%20south-central%20Alaska&rft.jtitle=Journal%20of%20mammalogy&rft.au=Roffler,%20Gretchen%20H.&rft.date=2012-10-01&rft.volume=93&rft.issue=5&rft.spage=1318&rft.epage=1330&rft.pages=1318-1330&rft.issn=0022-2372&rft.eissn=1545-1542&rft.coden=JOMAAL&rft_id=info:doi/10.1644/11-MAMM-A-275.1&rft_dat=%3Cjstor_proqu%3E23321942%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1143313239&rft_id=info:pmid/&rft_jstor_id=23321942&rfr_iscdi=true