Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies

► Chitosan–zeolite composite beads were useful in the removal of metal ions. ► Maximum adsorption capacity based on Langmuir isotherm was 25.88mg/g. ► The adsorption data were well described by pseudo-second order. ► The critical bed depth from Bed Depth Service Time (BDST) model was 3.44cm. Chitosa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2012-10, Vol.209, p.46-53
Hauptverfasser: Wan Ngah, W.S., Teong, L.C., Toh, R.H., Hanafiah, M.A.K.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 46
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 209
creator Wan Ngah, W.S.
Teong, L.C.
Toh, R.H.
Hanafiah, M.A.K.M.
description ► Chitosan–zeolite composite beads were useful in the removal of metal ions. ► Maximum adsorption capacity based on Langmuir isotherm was 25.88mg/g. ► The adsorption data were well described by pseudo-second order. ► The critical bed depth from Bed Depth Service Time (BDST) model was 3.44cm. Chitosan–zeolite composite (CZ) adsorbent prepared from chitosan and zeolite was used to remove Cu(II) from aqueous solutions. Batch adsorption studies were carried out to investigate the optimum conditions for the removal of Cu(II) using CZ. The optimum conditions were later utilized in kinetic, isotherm, fixed bed column and desorption studies. The pH point of zero charge (pHzpc) of CZ was 7.76 while the optimum pH for the removal of Cu(II) was 3. The removal of Cu(II) by using CZ was best described by the pseudo-second order kinetic. The isotherm was best fitted by the Redlich–Peterson and Langmuir models. The critical bed depth was 3.44cm based on the Bed Depth Service Time (BDSR) model. The data from the fixed bed column studies was well fitted by Clark model. The percentage of Cu(II) desorption was only 47.97%, which indicated that the Cu(II) ions were strongly bonded to the CZ surface.
doi_str_mv 10.1016/j.cej.2012.07.116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171872150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894712010182</els_id><sourcerecordid>1171872150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3790d5c342e115a6d5f12d1d73e2af5f6edf0c1af10ec7f2c27f51db96a84d063</originalsourceid><addsrcrecordid>eNp9kcFu1DAURSNUJNrCB7DCm0pFaoKfE8cJrKpRW0aqxAJmbbn2M_Uoiae2U0FX_EEX_CFfUkdTWLKwfBfnHT1fF8VboBVQaD9sK43bilFgFRUVQPuiOIRO1GXNgB3kXHe87PpGvCqOYtxSStse-sPicZPc4B5Ucn4i3hJ965KPavrz6_cD-sElJNqPOx-X5CaSbpEEHP29GhZ8NZ-u1--JDX4k6m5GP0cS_TAvuo_k3EQfdks-Iwb_ZqImQ6z7gYbc5KMzPk4kptk4jK-Ll1YNEd8838fF5vLi2-pzef3lar06vy513TWprEVPDdd1wxCAq9ZwC8yAETUyZblt0ViqQVmgqIVlmgnLwdz0reoaQ9v6uDjde3fB571jkqOLGodBTcsjJIDI9THgNKOwR3XwMQa0chfcqMJPCVQu5cutzOXLpXxJRR5d9CfPehW1GmxQk3bx3yBreSM66DL3bs9Z5aX6HjKz-ZpFPH9Qz4Vgmfi0JzC3ce8wyKgdThqNC6iTNN79Z48n2tCmpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1171872150</pqid></control><display><type>article</type><title>Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wan Ngah, W.S. ; Teong, L.C. ; Toh, R.H. ; Hanafiah, M.A.K.M.</creator><creatorcontrib>Wan Ngah, W.S. ; Teong, L.C. ; Toh, R.H. ; Hanafiah, M.A.K.M.</creatorcontrib><description>► Chitosan–zeolite composite beads were useful in the removal of metal ions. ► Maximum adsorption capacity based on Langmuir isotherm was 25.88mg/g. ► The adsorption data were well described by pseudo-second order. ► The critical bed depth from Bed Depth Service Time (BDST) model was 3.44cm. Chitosan–zeolite composite (CZ) adsorbent prepared from chitosan and zeolite was used to remove Cu(II) from aqueous solutions. Batch adsorption studies were carried out to investigate the optimum conditions for the removal of Cu(II) using CZ. The optimum conditions were later utilized in kinetic, isotherm, fixed bed column and desorption studies. The pH point of zero charge (pHzpc) of CZ was 7.76 while the optimum pH for the removal of Cu(II) was 3. The removal of Cu(II) by using CZ was best described by the pseudo-second order kinetic. The isotherm was best fitted by the Redlich–Peterson and Langmuir models. The critical bed depth was 3.44cm based on the Bed Depth Service Time (BDSR) model. The data from the fixed bed column studies was well fitted by Clark model. The percentage of Cu(II) desorption was only 47.97%, which indicated that the Cu(II) ions were strongly bonded to the CZ surface.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2012.07.116</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>adsorbents ; Adsorption ; Applied sciences ; Aqueous solutions ; Batch ; Chemical engineering ; chitosan ; Chitosan–zeolite composite ; Column ; Desorption ; Exact sciences and technology ; ions ; Isotherm ; Isotherms ; Kinetics ; Optimization ; sorption isotherms ; Surface chemistry ; Zeolites</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2012-10, Vol.209, p.46-53</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3790d5c342e115a6d5f12d1d73e2af5f6edf0c1af10ec7f2c27f51db96a84d063</citedby><cites>FETCH-LOGICAL-c384t-3790d5c342e115a6d5f12d1d73e2af5f6edf0c1af10ec7f2c27f51db96a84d063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2012.07.116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26547818$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan Ngah, W.S.</creatorcontrib><creatorcontrib>Teong, L.C.</creatorcontrib><creatorcontrib>Toh, R.H.</creatorcontrib><creatorcontrib>Hanafiah, M.A.K.M.</creatorcontrib><title>Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>► Chitosan–zeolite composite beads were useful in the removal of metal ions. ► Maximum adsorption capacity based on Langmuir isotherm was 25.88mg/g. ► The adsorption data were well described by pseudo-second order. ► The critical bed depth from Bed Depth Service Time (BDST) model was 3.44cm. Chitosan–zeolite composite (CZ) adsorbent prepared from chitosan and zeolite was used to remove Cu(II) from aqueous solutions. Batch adsorption studies were carried out to investigate the optimum conditions for the removal of Cu(II) using CZ. The optimum conditions were later utilized in kinetic, isotherm, fixed bed column and desorption studies. The pH point of zero charge (pHzpc) of CZ was 7.76 while the optimum pH for the removal of Cu(II) was 3. The removal of Cu(II) by using CZ was best described by the pseudo-second order kinetic. The isotherm was best fitted by the Redlich–Peterson and Langmuir models. The critical bed depth was 3.44cm based on the Bed Depth Service Time (BDSR) model. The data from the fixed bed column studies was well fitted by Clark model. The percentage of Cu(II) desorption was only 47.97%, which indicated that the Cu(II) ions were strongly bonded to the CZ surface.</description><subject>adsorbents</subject><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Aqueous solutions</subject><subject>Batch</subject><subject>Chemical engineering</subject><subject>chitosan</subject><subject>Chitosan–zeolite composite</subject><subject>Column</subject><subject>Desorption</subject><subject>Exact sciences and technology</subject><subject>ions</subject><subject>Isotherm</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Optimization</subject><subject>sorption isotherms</subject><subject>Surface chemistry</subject><subject>Zeolites</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURSNUJNrCB7DCm0pFaoKfE8cJrKpRW0aqxAJmbbn2M_Uoiae2U0FX_EEX_CFfUkdTWLKwfBfnHT1fF8VboBVQaD9sK43bilFgFRUVQPuiOIRO1GXNgB3kXHe87PpGvCqOYtxSStse-sPicZPc4B5Ucn4i3hJ965KPavrz6_cD-sElJNqPOx-X5CaSbpEEHP29GhZ8NZ-u1--JDX4k6m5GP0cS_TAvuo_k3EQfdks-Iwb_ZqImQ6z7gYbc5KMzPk4kptk4jK-Ll1YNEd8838fF5vLi2-pzef3lar06vy513TWprEVPDdd1wxCAq9ZwC8yAETUyZblt0ViqQVmgqIVlmgnLwdz0reoaQ9v6uDjde3fB571jkqOLGodBTcsjJIDI9THgNKOwR3XwMQa0chfcqMJPCVQu5cutzOXLpXxJRR5d9CfPehW1GmxQk3bx3yBreSM66DL3bs9Z5aX6HjKz-ZpFPH9Qz4Vgmfi0JzC3ce8wyKgdThqNC6iTNN79Z48n2tCmpQ</recordid><startdate>20121015</startdate><enddate>20121015</enddate><creator>Wan Ngah, W.S.</creator><creator>Teong, L.C.</creator><creator>Toh, R.H.</creator><creator>Hanafiah, M.A.K.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121015</creationdate><title>Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies</title><author>Wan Ngah, W.S. ; Teong, L.C. ; Toh, R.H. ; Hanafiah, M.A.K.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3790d5c342e115a6d5f12d1d73e2af5f6edf0c1af10ec7f2c27f51db96a84d063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adsorbents</topic><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Aqueous solutions</topic><topic>Batch</topic><topic>Chemical engineering</topic><topic>chitosan</topic><topic>Chitosan–zeolite composite</topic><topic>Column</topic><topic>Desorption</topic><topic>Exact sciences and technology</topic><topic>ions</topic><topic>Isotherm</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Optimization</topic><topic>sorption isotherms</topic><topic>Surface chemistry</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan Ngah, W.S.</creatorcontrib><creatorcontrib>Teong, L.C.</creatorcontrib><creatorcontrib>Toh, R.H.</creatorcontrib><creatorcontrib>Hanafiah, M.A.K.M.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan Ngah, W.S.</au><au>Teong, L.C.</au><au>Toh, R.H.</au><au>Hanafiah, M.A.K.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2012-10-15</date><risdate>2012</risdate><volume>209</volume><spage>46</spage><epage>53</epage><pages>46-53</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>► Chitosan–zeolite composite beads were useful in the removal of metal ions. ► Maximum adsorption capacity based on Langmuir isotherm was 25.88mg/g. ► The adsorption data were well described by pseudo-second order. ► The critical bed depth from Bed Depth Service Time (BDST) model was 3.44cm. Chitosan–zeolite composite (CZ) adsorbent prepared from chitosan and zeolite was used to remove Cu(II) from aqueous solutions. Batch adsorption studies were carried out to investigate the optimum conditions for the removal of Cu(II) using CZ. The optimum conditions were later utilized in kinetic, isotherm, fixed bed column and desorption studies. The pH point of zero charge (pHzpc) of CZ was 7.76 while the optimum pH for the removal of Cu(II) was 3. The removal of Cu(II) by using CZ was best described by the pseudo-second order kinetic. The isotherm was best fitted by the Redlich–Peterson and Langmuir models. The critical bed depth was 3.44cm based on the Bed Depth Service Time (BDSR) model. The data from the fixed bed column studies was well fitted by Clark model. The percentage of Cu(II) desorption was only 47.97%, which indicated that the Cu(II) ions were strongly bonded to the CZ surface.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2012.07.116</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2012-10, Vol.209, p.46-53
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_1171872150
source Access via ScienceDirect (Elsevier)
subjects adsorbents
Adsorption
Applied sciences
Aqueous solutions
Batch
Chemical engineering
chitosan
Chitosan–zeolite composite
Column
Desorption
Exact sciences and technology
ions
Isotherm
Isotherms
Kinetics
Optimization
sorption isotherms
Surface chemistry
Zeolites
title Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilization%20of%20chitosan%E2%80%93zeolite%20composite%20in%20the%20removal%20of%20Cu(II)%20from%20aqueous%20solution:%20Adsorption,%20desorption%20and%20fixed%20bed%20column%20studies&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Wan%20Ngah,%20W.S.&rft.date=2012-10-15&rft.volume=209&rft.spage=46&rft.epage=53&rft.pages=46-53&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2012.07.116&rft_dat=%3Cproquest_cross%3E1171872150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1171872150&rft_id=info:pmid/&rft_els_id=S1385894712010182&rfr_iscdi=true