Systematic sampling with errors in sample locations

Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2010-03, Vol.97 (1), p.1-13
Hauptverfasser: ZIEGEL, JOHANNA, BADDELEY, ADRIAN, DORPH-PETERSEN, KARL-ANTON, JENSEN, EVA B. VEDEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Biometrika
container_volume 97
creator ZIEGEL, JOHANNA
BADDELEY, ADRIAN
DORPH-PETERSEN, KARL-ANTON
JENSEN, EVA B. VEDEL
description Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung, that is fluctuation effects, and a slower order of convergence. This suggests that the current practice in some areas of microscopy may be based on over-optimistic predictions of estimator accuracy.
doi_str_mv 10.1093/biomet/asp067
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171869798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27798893</jstor_id><oup_id>10.1093/biomet/asp067</oup_id><sourcerecordid>27798893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-3a551513d21670664b4427361cc905e39847304bd13e8dcd0fe8cd46dd527d043</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvhyBEpQkLiEurJ-CM5woq2oEpIFBDai-V1vNRLEqd2Fth_z5SslooLh_HI9uN3Zl4z9hT4K-ANnq5D7P10avPIlb7HFiCUKFECv88WnHNVohDiIXuU8_Z2q6RaMLza58n3dgquyLYfuzB8K36G6brwKcWUizDM577ooiMsDvkxe7CxXfZPDvmEfT57-2l5UV5-OH-3fH1ZOlnhVKKVEiRgW4HSVE6shag0KnCu4dJjUwuNXKxbQF-3ruUbX7tWqLaVlW65wBP2ctYdU7zZ-TyZPmTnu84OPu6yAdBQq0Y3NaHP_0G3cZcG6s5UHIiRiASVM-RSzDn5jRlT6G3aG-Dm1kEzO2hmB4k_n_nkR--OcNyNB-6HQdtoWvYUVIdTChRAMf7JgOZ66knpxaE9m53tNskOLuSjYlXJpgZ5Z2Kq8d_mns3oNk8x_ZXSZEfd3Bk20P_-Ot7b9N3Qay3NxdeVWV2dfVy-ef_FrPA3Z4qwew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201697533</pqid></control><display><type>article</type><title>Systematic sampling with errors in sample locations</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>ZIEGEL, JOHANNA ; BADDELEY, ADRIAN ; DORPH-PETERSEN, KARL-ANTON ; JENSEN, EVA B. VEDEL</creator><creatorcontrib>ZIEGEL, JOHANNA ; BADDELEY, ADRIAN ; DORPH-PETERSEN, KARL-ANTON ; JENSEN, EVA B. VEDEL</creatorcontrib><description>Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung, that is fluctuation effects, and a slower order of convergence. This suggests that the current practice in some areas of microscopy may be based on over-optimistic predictions of estimator accuracy.</description><identifier>ISSN: 0006-3444</identifier><identifier>ISSN: 1464-3510</identifier><identifier>EISSN: 1464-3510</identifier><identifier>EISSN: 0006-3444</identifier><identifier>DOI: 10.1093/biomet/asp067</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Applications ; Asymptotic methods ; Asymptotic variance ; Biology, psychology, social sciences ; Cavalieri estimator ; Convergence ; Cumulative error ; Density ; Error rates ; Errors ; Estimating techniques ; Estimators ; Exact sciences and technology ; Factorials ; General topics ; Geometric shapes ; Integrable functions ; Linear inference, regression ; Mathematics ; Microscopy ; Moment measure ; Perturbed systematic sampling ; Physical training ; Point process ; Probability and statistics ; Probability theory and stochastic processes ; Random sampling ; Sampling ; Sampling errors ; Sampling techniques ; Sciences and techniques of general use ; Spatial statistics ; Statistical variance ; Statistics ; Stereology ; Stochastic processes ; Studies ; Unbiased estimators ; Variance analysis</subject><ispartof>Biometrika, 2010-03, Vol.97 (1), p.1-13</ispartof><rights>2010 Biometrika Trust</rights><rights>Oxford University Press © 2010 Biometrika Trust 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-3a551513d21670664b4427361cc905e39847304bd13e8dcd0fe8cd46dd527d043</citedby><cites>FETCH-LOGICAL-c523t-3a551513d21670664b4427361cc905e39847304bd13e8dcd0fe8cd46dd527d043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27798893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27798893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1578,3994,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22598154$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a97_3ay_3a2010_3ai_3a1_3ap_3a1-13.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>ZIEGEL, JOHANNA</creatorcontrib><creatorcontrib>BADDELEY, ADRIAN</creatorcontrib><creatorcontrib>DORPH-PETERSEN, KARL-ANTON</creatorcontrib><creatorcontrib>JENSEN, EVA B. VEDEL</creatorcontrib><title>Systematic sampling with errors in sample locations</title><title>Biometrika</title><description>Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung, that is fluctuation effects, and a slower order of convergence. This suggests that the current practice in some areas of microscopy may be based on over-optimistic predictions of estimator accuracy.</description><subject>Applications</subject><subject>Asymptotic methods</subject><subject>Asymptotic variance</subject><subject>Biology, psychology, social sciences</subject><subject>Cavalieri estimator</subject><subject>Convergence</subject><subject>Cumulative error</subject><subject>Density</subject><subject>Error rates</subject><subject>Errors</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Factorials</subject><subject>General topics</subject><subject>Geometric shapes</subject><subject>Integrable functions</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Microscopy</subject><subject>Moment measure</subject><subject>Perturbed systematic sampling</subject><subject>Physical training</subject><subject>Point process</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Sampling errors</subject><subject>Sampling techniques</subject><subject>Sciences and techniques of general use</subject><subject>Spatial statistics</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stereology</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Unbiased estimators</subject><subject>Variance analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><issn>1464-3510</issn><issn>0006-3444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1v1DAQhi0EEkvhyBEpQkLiEurJ-CM5woq2oEpIFBDai-V1vNRLEqd2Fth_z5SslooLh_HI9uN3Zl4z9hT4K-ANnq5D7P10avPIlb7HFiCUKFECv88WnHNVohDiIXuU8_Z2q6RaMLza58n3dgquyLYfuzB8K36G6brwKcWUizDM577ooiMsDvkxe7CxXfZPDvmEfT57-2l5UV5-OH-3fH1ZOlnhVKKVEiRgW4HSVE6shag0KnCu4dJjUwuNXKxbQF-3ruUbX7tWqLaVlW65wBP2ctYdU7zZ-TyZPmTnu84OPu6yAdBQq0Y3NaHP_0G3cZcG6s5UHIiRiASVM-RSzDn5jRlT6G3aG-Dm1kEzO2hmB4k_n_nkR--OcNyNB-6HQdtoWvYUVIdTChRAMf7JgOZ66knpxaE9m53tNskOLuSjYlXJpgZ5Z2Kq8d_mns3oNk8x_ZXSZEfd3Bk20P_-Ot7b9N3Qay3NxdeVWV2dfVy-ef_FrPA3Z4qwew</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>ZIEGEL, JOHANNA</creator><creator>BADDELEY, ADRIAN</creator><creator>DORPH-PETERSEN, KARL-ANTON</creator><creator>JENSEN, EVA B. VEDEL</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100301</creationdate><title>Systematic sampling with errors in sample locations</title><author>ZIEGEL, JOHANNA ; BADDELEY, ADRIAN ; DORPH-PETERSEN, KARL-ANTON ; JENSEN, EVA B. VEDEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-3a551513d21670664b4427361cc905e39847304bd13e8dcd0fe8cd46dd527d043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications</topic><topic>Asymptotic methods</topic><topic>Asymptotic variance</topic><topic>Biology, psychology, social sciences</topic><topic>Cavalieri estimator</topic><topic>Convergence</topic><topic>Cumulative error</topic><topic>Density</topic><topic>Error rates</topic><topic>Errors</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Factorials</topic><topic>General topics</topic><topic>Geometric shapes</topic><topic>Integrable functions</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Microscopy</topic><topic>Moment measure</topic><topic>Perturbed systematic sampling</topic><topic>Physical training</topic><topic>Point process</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Sampling errors</topic><topic>Sampling techniques</topic><topic>Sciences and techniques of general use</topic><topic>Spatial statistics</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stereology</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Unbiased estimators</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZIEGEL, JOHANNA</creatorcontrib><creatorcontrib>BADDELEY, ADRIAN</creatorcontrib><creatorcontrib>DORPH-PETERSEN, KARL-ANTON</creatorcontrib><creatorcontrib>JENSEN, EVA B. VEDEL</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZIEGEL, JOHANNA</au><au>BADDELEY, ADRIAN</au><au>DORPH-PETERSEN, KARL-ANTON</au><au>JENSEN, EVA B. VEDEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic sampling with errors in sample locations</atitle><jtitle>Biometrika</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>97</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0006-3444</issn><issn>1464-3510</issn><eissn>1464-3510</eissn><eissn>0006-3444</eissn><coden>BIOKAX</coden><abstract>Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung, that is fluctuation effects, and a slower order of convergence. This suggests that the current practice in some areas of microscopy may be based on over-optimistic predictions of estimator accuracy.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asp067</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2010-03, Vol.97 (1), p.1-13
issn 0006-3444
1464-3510
1464-3510
0006-3444
language eng
recordid cdi_proquest_miscellaneous_1171869798
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Applications
Asymptotic methods
Asymptotic variance
Biology, psychology, social sciences
Cavalieri estimator
Convergence
Cumulative error
Density
Error rates
Errors
Estimating techniques
Estimators
Exact sciences and technology
Factorials
General topics
Geometric shapes
Integrable functions
Linear inference, regression
Mathematics
Microscopy
Moment measure
Perturbed systematic sampling
Physical training
Point process
Probability and statistics
Probability theory and stochastic processes
Random sampling
Sampling
Sampling errors
Sampling techniques
Sciences and techniques of general use
Spatial statistics
Statistical variance
Statistics
Stereology
Stochastic processes
Studies
Unbiased estimators
Variance analysis
title Systematic sampling with errors in sample locations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20sampling%20with%20errors%20in%20sample%20locations&rft.jtitle=Biometrika&rft.au=ZIEGEL,%20JOHANNA&rft.date=2010-03-01&rft.volume=97&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asp067&rft_dat=%3Cjstor_proqu%3E27798893%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201697533&rft_id=info:pmid/&rft_jstor_id=27798893&rft_oup_id=10.1093/biomet/asp067&rfr_iscdi=true