Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6

A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical decision making 2012-09, Vol.32 (5), p.722-732
Hauptverfasser: Briggs, Andrew H., Weinstein, Milton C., Fenwick, Elisabeth A. L., Karnon, Jonathan, Sculpher, Mark J., Paltiel, A. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 732
container_issue 5
container_start_page 722
container_title Medical decision making
container_volume 32
creator Briggs, Andrew H.
Weinstein, Milton C.
Fenwick, Elisabeth A. L.
Karnon, Jonathan
Sculpher, Mark J.
Paltiel, A. David
description A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis.
doi_str_mv 10.1177/0272989X12458348
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1151923346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0272989X12458348</sage_id><sourcerecordid>1151923346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5f2d969454b7ad5d4c8e336f558cee45cab52305b5cdd55613e3c5189118d7b43</originalsourceid><addsrcrecordid>eNp1kD1PwzAYhC0EoqWwM6GMLAG_tt_EHquqfEggGKjULXJsB6XKR7Gdof-eVC0MSEw33HMn3RFyDfQOIM_vKcuZkmoNTKDkQp6QKSCyNJOwPiXTvZ3u_Qm5CGFDKQglxTmZMKYUpTKfEv7aW9ck79rr1kXnk2WIdatj3XeJ7myy6ozzUddd3CXzTje7UIdLclbpJriro87I6mH5sXhKX94enxfzl9RwnscUK2ZVpgSKMtcWrTDScZ5ViNI4J9DoEhmnWKKxFjED7rhBkApA2rwUfEZuD71b338NLsSirYNxTaM71w-hAEBQjHORjSg9oMb3IXhXFVs_zvC7Amixv6r4e9UYuTm2D2Xr7G_g55sRSA9A0J-u2PSDH_eH_wu_AbGxcAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151923346</pqid></control><display><type>article</type><title>Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Briggs, Andrew H. ; Weinstein, Milton C. ; Fenwick, Elisabeth A. L. ; Karnon, Jonathan ; Sculpher, Mark J. ; Paltiel, A. David</creator><creatorcontrib>Briggs, Andrew H. ; Weinstein, Milton C. ; Fenwick, Elisabeth A. L. ; Karnon, Jonathan ; Sculpher, Mark J. ; Paltiel, A. David ; ISPOR-SMDM Modeling Good Research Practices Task Force</creatorcontrib><description>A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis.</description><identifier>ISSN: 0272-989X</identifier><identifier>EISSN: 1552-681X</identifier><identifier>DOI: 10.1177/0272989X12458348</identifier><identifier>PMID: 22990087</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Decision Making ; Models, Theoretical ; Stochastic Processes ; Uncertainty</subject><ispartof>Medical decision making, 2012-09, Vol.32 (5), p.722-732</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5f2d969454b7ad5d4c8e336f558cee45cab52305b5cdd55613e3c5189118d7b43</citedby><cites>FETCH-LOGICAL-c337t-5f2d969454b7ad5d4c8e336f558cee45cab52305b5cdd55613e3c5189118d7b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0272989X12458348$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0272989X12458348$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22990087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Briggs, Andrew H.</creatorcontrib><creatorcontrib>Weinstein, Milton C.</creatorcontrib><creatorcontrib>Fenwick, Elisabeth A. L.</creatorcontrib><creatorcontrib>Karnon, Jonathan</creatorcontrib><creatorcontrib>Sculpher, Mark J.</creatorcontrib><creatorcontrib>Paltiel, A. David</creatorcontrib><creatorcontrib>ISPOR-SMDM Modeling Good Research Practices Task Force</creatorcontrib><title>Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6</title><title>Medical decision making</title><addtitle>Med Decis Making</addtitle><description>A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis.</description><subject>Decision Making</subject><subject>Models, Theoretical</subject><subject>Stochastic Processes</subject><subject>Uncertainty</subject><issn>0272-989X</issn><issn>1552-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAYhC0EoqWwM6GMLAG_tt_EHquqfEggGKjULXJsB6XKR7Gdof-eVC0MSEw33HMn3RFyDfQOIM_vKcuZkmoNTKDkQp6QKSCyNJOwPiXTvZ3u_Qm5CGFDKQglxTmZMKYUpTKfEv7aW9ck79rr1kXnk2WIdatj3XeJ7myy6ozzUddd3CXzTje7UIdLclbpJriro87I6mH5sXhKX94enxfzl9RwnscUK2ZVpgSKMtcWrTDScZ5ViNI4J9DoEhmnWKKxFjED7rhBkApA2rwUfEZuD71b338NLsSirYNxTaM71w-hAEBQjHORjSg9oMb3IXhXFVs_zvC7Amixv6r4e9UYuTm2D2Xr7G_g55sRSA9A0J-u2PSDH_eH_wu_AbGxcAc</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Briggs, Andrew H.</creator><creator>Weinstein, Milton C.</creator><creator>Fenwick, Elisabeth A. L.</creator><creator>Karnon, Jonathan</creator><creator>Sculpher, Mark J.</creator><creator>Paltiel, A. David</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201209</creationdate><title>Model Parameter Estimation and Uncertainty Analysis</title><author>Briggs, Andrew H. ; Weinstein, Milton C. ; Fenwick, Elisabeth A. L. ; Karnon, Jonathan ; Sculpher, Mark J. ; Paltiel, A. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5f2d969454b7ad5d4c8e336f558cee45cab52305b5cdd55613e3c5189118d7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Decision Making</topic><topic>Models, Theoretical</topic><topic>Stochastic Processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briggs, Andrew H.</creatorcontrib><creatorcontrib>Weinstein, Milton C.</creatorcontrib><creatorcontrib>Fenwick, Elisabeth A. L.</creatorcontrib><creatorcontrib>Karnon, Jonathan</creatorcontrib><creatorcontrib>Sculpher, Mark J.</creatorcontrib><creatorcontrib>Paltiel, A. David</creatorcontrib><creatorcontrib>ISPOR-SMDM Modeling Good Research Practices Task Force</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briggs, Andrew H.</au><au>Weinstein, Milton C.</au><au>Fenwick, Elisabeth A. L.</au><au>Karnon, Jonathan</au><au>Sculpher, Mark J.</au><au>Paltiel, A. David</au><aucorp>ISPOR-SMDM Modeling Good Research Practices Task Force</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6</atitle><jtitle>Medical decision making</jtitle><addtitle>Med Decis Making</addtitle><date>2012-09</date><risdate>2012</risdate><volume>32</volume><issue>5</issue><spage>722</spage><epage>732</epage><pages>722-732</pages><issn>0272-989X</issn><eissn>1552-681X</eissn><abstract>A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>22990087</pmid><doi>10.1177/0272989X12458348</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-989X
ispartof Medical decision making, 2012-09, Vol.32 (5), p.722-732
issn 0272-989X
1552-681X
language eng
recordid cdi_proquest_miscellaneous_1151923346
source MEDLINE; SAGE Complete A-Z List
subjects Decision Making
Models, Theoretical
Stochastic Processes
Uncertainty
title Model Parameter Estimation and Uncertainty Analysis: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Parameter%20Estimation%20and%20Uncertainty%20Analysis:%20A%20Report%20of%20the%20ISPOR-SMDM%20Modeling%20Good%20Research%20Practices%20Task%20Force%20Working%20Group%E2%80%936&rft.jtitle=Medical%20decision%20making&rft.au=Briggs,%20Andrew%20H.&rft.aucorp=ISPOR-SMDM%20Modeling%20Good%20Research%20Practices%20Task%20Force&rft.date=2012-09&rft.volume=32&rft.issue=5&rft.spage=722&rft.epage=732&rft.pages=722-732&rft.issn=0272-989X&rft.eissn=1552-681X&rft_id=info:doi/10.1177/0272989X12458348&rft_dat=%3Cproquest_cross%3E1151923346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151923346&rft_id=info:pmid/22990087&rft_sage_id=10.1177_0272989X12458348&rfr_iscdi=true