Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study

Background To validate the use of artificial neural network (ANN) models for predicting 5-year mortality in HCC and to compare their predictive capability with that of logistic regression (LR) models. Methods This study retrospectively compared LR and ANN models based on initial clinical data for 22...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of gastrointestinal surgery 2012-11, Vol.16 (11), p.2126-2131
Hauptverfasser: Shi, Hon-Yi, Lee, King-Teh, Wang, Jhi-Joung, Sun, Ding-Ping, Lee, Hao-Hsien, Chiu, Chong-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2131
container_issue 11
container_start_page 2126
container_title Journal of gastrointestinal surgery
container_volume 16
creator Shi, Hon-Yi
Lee, King-Teh
Wang, Jhi-Joung
Sun, Ding-Ping
Lee, Hao-Hsien
Chiu, Chong-Chi
description Background To validate the use of artificial neural network (ANN) models for predicting 5-year mortality in HCC and to compare their predictive capability with that of logistic regression (LR) models. Methods This study retrospectively compared LR and ANN models based on initial clinical data for 22,926 HCC surgery patients from 1998 to 2009. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the importance of variables. Results Compared to the LR models, the ANN models had a better accuracy rate in 96.57 % of cases, a better Hosmer–Lemeshow statistic in 0.34 of cases, and a better receiver operating characteristic curves in 88.51 % of cases. Surgeon volume was the most influential (sensitive) parameter affecting 5-year mortality followed by hospital volume and Charlson co-morbidity index. Conclusions In comparison with the conventional LR model, the ANN model in this study was more accurate in predicting 5-year mortality. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.
doi_str_mv 10.1007/s11605-012-1986-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1151700620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1151700620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fceaf38e2c968cb756cf39677b6ebb549b5e6b35b0593583537d50b420ee706a3</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7of-AC8S8OIlmo9O0vE2DOoK6yqsgp5Ckq5esvZ0xiTNMhd_-2Z2VhFB6lAF9dRbRb0IPWP0FaNUvy6MKSoJZZww0ysiHqBj1mtBOsXVw1ZTwwiX8tsROinlmlKmKesfoyPOe72PY_RrlWscY4huwhew5LtUb1L-gT-mASY8pow_ZxhiqHG-wpJ8B5dbL1c3xbrDq7FCxpdLvoK8u6PPYOtqCjBNy9TQtcshzmnj3uAVvnA1pvkmDoAv6zLsnqBHo5sKPL3Pp-jru7df1mfk_NP7D-vVOQkdlZWMAdwoeuDBqD54LVUYhVFaewXey854CcoL6ak0QvZCCj1I6jtOATRVTpyilwfdbU4_FyjVbmLZn-hmSEuxjMn2G6o4beiLf9DrtOS5XdeozhjW1plGsQMVciolw2i3OW5c3llG7d4cezDHNnPs3hwr2szze-XFb2D4M_HbjQbwA1Baa24P_Wv1f1VvAQ0NmkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1149915499</pqid></control><display><type>article</type><title>Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Shi, Hon-Yi ; Lee, King-Teh ; Wang, Jhi-Joung ; Sun, Ding-Ping ; Lee, Hao-Hsien ; Chiu, Chong-Chi</creator><creatorcontrib>Shi, Hon-Yi ; Lee, King-Teh ; Wang, Jhi-Joung ; Sun, Ding-Ping ; Lee, Hao-Hsien ; Chiu, Chong-Chi</creatorcontrib><description>Background To validate the use of artificial neural network (ANN) models for predicting 5-year mortality in HCC and to compare their predictive capability with that of logistic regression (LR) models. Methods This study retrospectively compared LR and ANN models based on initial clinical data for 22,926 HCC surgery patients from 1998 to 2009. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the importance of variables. Results Compared to the LR models, the ANN models had a better accuracy rate in 96.57 % of cases, a better Hosmer–Lemeshow statistic in 0.34 of cases, and a better receiver operating characteristic curves in 88.51 % of cases. Surgeon volume was the most influential (sensitive) parameter affecting 5-year mortality followed by hospital volume and Charlson co-morbidity index. Conclusions In comparison with the conventional LR model, the ANN model in this study was more accurate in predicting 5-year mortality. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.</description><identifier>ISSN: 1091-255X</identifier><identifier>EISSN: 1873-4626</identifier><identifier>DOI: 10.1007/s11605-012-1986-3</identifier><identifier>PMID: 22878787</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Bile ducts ; Carcinoma, Hepatocellular - mortality ; Carcinoma, Hepatocellular - surgery ; Codes ; Data collection ; Feasibility Studies ; Female ; Gastroenterology ; Hepatectomy ; Hospitals ; Humans ; Liver cancer ; Liver Neoplasms - mortality ; Liver Neoplasms - surgery ; Logistic Models ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Morbidity ; Mortality ; National health insurance ; Neural networks ; Neural Networks, Computer ; Original Article ; Patients ; Regression analysis ; ROC Curve ; Surgeons ; Surgery ; Tumors</subject><ispartof>Journal of gastrointestinal surgery, 2012-11, Vol.16 (11), p.2126-2131</ispartof><rights>The Society for Surgery of the Alimentary Tract 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fceaf38e2c968cb756cf39677b6ebb549b5e6b35b0593583537d50b420ee706a3</citedby><cites>FETCH-LOGICAL-c405t-fceaf38e2c968cb756cf39677b6ebb549b5e6b35b0593583537d50b420ee706a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11605-012-1986-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11605-012-1986-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22878787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hon-Yi</creatorcontrib><creatorcontrib>Lee, King-Teh</creatorcontrib><creatorcontrib>Wang, Jhi-Joung</creatorcontrib><creatorcontrib>Sun, Ding-Ping</creatorcontrib><creatorcontrib>Lee, Hao-Hsien</creatorcontrib><creatorcontrib>Chiu, Chong-Chi</creatorcontrib><title>Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study</title><title>Journal of gastrointestinal surgery</title><addtitle>J Gastrointest Surg</addtitle><addtitle>J Gastrointest Surg</addtitle><description>Background To validate the use of artificial neural network (ANN) models for predicting 5-year mortality in HCC and to compare their predictive capability with that of logistic regression (LR) models. Methods This study retrospectively compared LR and ANN models based on initial clinical data for 22,926 HCC surgery patients from 1998 to 2009. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the importance of variables. Results Compared to the LR models, the ANN models had a better accuracy rate in 96.57 % of cases, a better Hosmer–Lemeshow statistic in 0.34 of cases, and a better receiver operating characteristic curves in 88.51 % of cases. Surgeon volume was the most influential (sensitive) parameter affecting 5-year mortality followed by hospital volume and Charlson co-morbidity index. Conclusions In comparison with the conventional LR model, the ANN model in this study was more accurate in predicting 5-year mortality. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.</description><subject>Bile ducts</subject><subject>Carcinoma, Hepatocellular - mortality</subject><subject>Carcinoma, Hepatocellular - surgery</subject><subject>Codes</subject><subject>Data collection</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Hepatectomy</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - mortality</subject><subject>Liver Neoplasms - surgery</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>National health insurance</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Original Article</subject><subject>Patients</subject><subject>Regression analysis</subject><subject>ROC Curve</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>Tumors</subject><issn>1091-255X</issn><issn>1873-4626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU2LFDEQhoMo7of-AC8S8OIlmo9O0vE2DOoK6yqsgp5Ckq5esvZ0xiTNMhd_-2Z2VhFB6lAF9dRbRb0IPWP0FaNUvy6MKSoJZZww0ysiHqBj1mtBOsXVw1ZTwwiX8tsROinlmlKmKesfoyPOe72PY_RrlWscY4huwhew5LtUb1L-gT-mASY8pow_ZxhiqHG-wpJ8B5dbL1c3xbrDq7FCxpdLvoK8u6PPYOtqCjBNy9TQtcshzmnj3uAVvnA1pvkmDoAv6zLsnqBHo5sKPL3Pp-jru7df1mfk_NP7D-vVOQkdlZWMAdwoeuDBqD54LVUYhVFaewXey854CcoL6ak0QvZCCj1I6jtOATRVTpyilwfdbU4_FyjVbmLZn-hmSEuxjMn2G6o4beiLf9DrtOS5XdeozhjW1plGsQMVciolw2i3OW5c3llG7d4cezDHNnPs3hwr2szze-XFb2D4M_HbjQbwA1Baa24P_Wv1f1VvAQ0NmkM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Shi, Hon-Yi</creator><creator>Lee, King-Teh</creator><creator>Wang, Jhi-Joung</creator><creator>Sun, Ding-Ping</creator><creator>Lee, Hao-Hsien</creator><creator>Chiu, Chong-Chi</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20121101</creationdate><title>Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study</title><author>Shi, Hon-Yi ; Lee, King-Teh ; Wang, Jhi-Joung ; Sun, Ding-Ping ; Lee, Hao-Hsien ; Chiu, Chong-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fceaf38e2c968cb756cf39677b6ebb549b5e6b35b0593583537d50b420ee706a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bile ducts</topic><topic>Carcinoma, Hepatocellular - mortality</topic><topic>Carcinoma, Hepatocellular - surgery</topic><topic>Codes</topic><topic>Data collection</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Hepatectomy</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - mortality</topic><topic>Liver Neoplasms - surgery</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>National health insurance</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Original Article</topic><topic>Patients</topic><topic>Regression analysis</topic><topic>ROC Curve</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hon-Yi</creatorcontrib><creatorcontrib>Lee, King-Teh</creatorcontrib><creatorcontrib>Wang, Jhi-Joung</creatorcontrib><creatorcontrib>Sun, Ding-Ping</creatorcontrib><creatorcontrib>Lee, Hao-Hsien</creatorcontrib><creatorcontrib>Chiu, Chong-Chi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of gastrointestinal surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hon-Yi</au><au>Lee, King-Teh</au><au>Wang, Jhi-Joung</au><au>Sun, Ding-Ping</au><au>Lee, Hao-Hsien</au><au>Chiu, Chong-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study</atitle><jtitle>Journal of gastrointestinal surgery</jtitle><stitle>J Gastrointest Surg</stitle><addtitle>J Gastrointest Surg</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>16</volume><issue>11</issue><spage>2126</spage><epage>2131</epage><pages>2126-2131</pages><issn>1091-255X</issn><eissn>1873-4626</eissn><abstract>Background To validate the use of artificial neural network (ANN) models for predicting 5-year mortality in HCC and to compare their predictive capability with that of logistic regression (LR) models. Methods This study retrospectively compared LR and ANN models based on initial clinical data for 22,926 HCC surgery patients from 1998 to 2009. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the importance of variables. Results Compared to the LR models, the ANN models had a better accuracy rate in 96.57 % of cases, a better Hosmer–Lemeshow statistic in 0.34 of cases, and a better receiver operating characteristic curves in 88.51 % of cases. Surgeon volume was the most influential (sensitive) parameter affecting 5-year mortality followed by hospital volume and Charlson co-morbidity index. Conclusions In comparison with the conventional LR model, the ANN model in this study was more accurate in predicting 5-year mortality. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22878787</pmid><doi>10.1007/s11605-012-1986-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1091-255X
ispartof Journal of gastrointestinal surgery, 2012-11, Vol.16 (11), p.2126-2131
issn 1091-255X
1873-4626
language eng
recordid cdi_proquest_miscellaneous_1151700620
source MEDLINE; SpringerLink Journals
subjects Bile ducts
Carcinoma, Hepatocellular - mortality
Carcinoma, Hepatocellular - surgery
Codes
Data collection
Feasibility Studies
Female
Gastroenterology
Hepatectomy
Hospitals
Humans
Liver cancer
Liver Neoplasms - mortality
Liver Neoplasms - surgery
Logistic Models
Male
Medicine
Medicine & Public Health
Middle Aged
Morbidity
Mortality
National health insurance
Neural networks
Neural Networks, Computer
Original Article
Patients
Regression analysis
ROC Curve
Surgeons
Surgery
Tumors
title Artificial Neural Network Model for Predicting 5-Year Mortality After Surgery for Hepatocellular Carcinoma: A Nationwide Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Model%20for%20Predicting%205-Year%20Mortality%20After%20Surgery%20for%20Hepatocellular%20Carcinoma:%20A%20Nationwide%20Study&rft.jtitle=Journal%20of%20gastrointestinal%20surgery&rft.au=Shi,%20Hon-Yi&rft.date=2012-11-01&rft.volume=16&rft.issue=11&rft.spage=2126&rft.epage=2131&rft.pages=2126-2131&rft.issn=1091-255X&rft.eissn=1873-4626&rft_id=info:doi/10.1007/s11605-012-1986-3&rft_dat=%3Cproquest_cross%3E1151700620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1149915499&rft_id=info:pmid/22878787&rfr_iscdi=true