Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study

Coordination chemistry of gold catalysts bearing eight different ligands [L=PPh3, JohnPhos (L2), Xphos (L3), DTBP, IMes, IPr, dppf, S‐tolBINAP (L8)] has been studied by NMR spectroscopy in solution at room temperature. Cationic or neutral mononuclear complexes LAuX (L=L2, L3, IMes, IPr; X=charged or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-11, Vol.18 (46), p.14732-14744
Hauptverfasser: Zhdanko, Alexander, Ströbele, Markus, Maier, Martin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14744
container_issue 46
container_start_page 14732
container_title Chemistry : a European journal
container_volume 18
creator Zhdanko, Alexander
Ströbele, Markus
Maier, Martin E.
description Coordination chemistry of gold catalysts bearing eight different ligands [L=PPh3, JohnPhos (L2), Xphos (L3), DTBP, IMes, IPr, dppf, S‐tolBINAP (L8)] has been studied by NMR spectroscopy in solution at room temperature. Cationic or neutral mononuclear complexes LAuX (L=L2, L3, IMes, IPr; X=charged or neutral ligand) underwent simple ligand exchange without giving any higher coordinate complexes. For L2AuX the following ligand strength series was determined: MeOH≪hex‐3‐yne
doi_str_mv 10.1002/chem.201201215
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1143822161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808710821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4775-706d9d7ec29c4391247c520f0686afe11b30d1d760fdfdf3888bfbe19f0031f93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyhFZ4sIly4yd2DG3Ki1b6AeI8nWzvLEtUrJxsRO1-fd4tWWFuKCxNJfnfTV6TMhzhCUCsNftD7dZMsDtw-oBWWDFsOBSVA_JAlQpC1FxdUCepHQNAEpw_pgcMA5YV4wvyPsmhGi7wYxdGGiT27o0xpkGT1eht7Qxo-nnNCbaDfQq9NOWe0OP6LEbTdc7Sy8vPtGrcbLzU_LImz65Z_f7kHx5e_K5OS3OP6zeNUfnRVtKWRUShFVWupaptuQKWSnbioEHUQvjHeKag0UrBXibh9d1vfZrh8oDcPSKH5JXu96bGH5NLo0639y6vjeDC1PSiCWvGUOBGX35D3odpjjk6zLFVYm8kjxTyx3VxpBSdF7fxG5j4qwR9Nay3lrWe8s58OK-dlpvnN3jf7RmQO2A26xo_k-dbk5PLv4uL3bZ_BHubp818acWkstKf7tc6e-1PPv4Fc50zX8D5OaVrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139413573</pqid></control><display><type>article</type><title>Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhdanko, Alexander ; Ströbele, Markus ; Maier, Martin E.</creator><creatorcontrib>Zhdanko, Alexander ; Ströbele, Markus ; Maier, Martin E.</creatorcontrib><description><![CDATA[Coordination chemistry of gold catalysts bearing eight different ligands [L=PPh3, JohnPhos (L2), Xphos (L3), DTBP, IMes, IPr, dppf, S‐tolBINAP (L8)] has been studied by NMR spectroscopy in solution at room temperature. Cationic or neutral mononuclear complexes LAuX (L=L2, L3, IMes, IPr; X=charged or neutral ligand) underwent simple ligand exchange without giving any higher coordinate complexes. For L2AuX the following ligand strength series was determined: MeOH≪hex‐3‐yne <MeCN≈OTf−≪Me2S<2,6‐lutidine<4‐picoline<CF3CO2−≈DMAP<TMTU<PPh3<OH−≈Cl−. Some heteroligand complexes DTBPAuX exist in solution in equilibrium with the corresponding symmetrical species. Binuclear complexes dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 showed different behavior in exchange reactions with ligands depending on the ligand strength. Thus, PPh3 causes ion of one gold atom to give mononuclear complexes LLAuPPh3+ and (Ph3P)nAu+, but other N and S ligands give ordinary dicationic species LL(AuNu)22+. In reactions with different bases, LAu+ provided new oxonium ions whose chemistry was also studied: (DTBPAu)3O+, (L2Au)2OH+, (L2Au)3O+, (L3Au)2OH+, and (IMesAu)2OH+. Ultimately, formation of gold hydroxide LAuOH (L=L2, L3, IMes) was studied. Ligand‐ or base‐assisted interconversions between (L2Au)2OH+, (L2Au)3O+, and L2AuOH are described. Reactions of dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 with bases provided more interesting oxonium ions, whose molecular composition was found to be [dppf(Au)2]3O22+, L8(Au)2OH+, and [L8(Au)2]3O22+, but their exact structure was not established. Several reactions between different oxonium species were conducted to observe mixed heteroligand oxonium species. Reaction of L2AuNCMe+ with S2− was studied; several new complexes with sulfide are described. For many reversible reactions the corresponding equilibrium constants were determined. Diving in a gold solution: A detailed exploration of the coordination chemistry of eight gold catalysts by NMR spectroscopy in solution was conducted. This covered ligand‐exchange reactions, formation and transformation of different oxonium salts, and complexes with sulfide.]]></description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201201215</identifier><identifier>PMID: 23018523</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Chemistry ; Gold ; ligand effects ; ligand exchange ; Ligands ; NMR spectroscopy ; oxonium ions</subject><ispartof>Chemistry : a European journal, 2012-11, Vol.18 (46), p.14732-14744</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4775-706d9d7ec29c4391247c520f0686afe11b30d1d760fdfdf3888bfbe19f0031f93</citedby><cites>FETCH-LOGICAL-c4775-706d9d7ec29c4391247c520f0686afe11b30d1d760fdfdf3888bfbe19f0031f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201201215$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201201215$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23018523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhdanko, Alexander</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Maier, Martin E.</creatorcontrib><title>Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description><![CDATA[Coordination chemistry of gold catalysts bearing eight different ligands [L=PPh3, JohnPhos (L2), Xphos (L3), DTBP, IMes, IPr, dppf, S‐tolBINAP (L8)] has been studied by NMR spectroscopy in solution at room temperature. Cationic or neutral mononuclear complexes LAuX (L=L2, L3, IMes, IPr; X=charged or neutral ligand) underwent simple ligand exchange without giving any higher coordinate complexes. For L2AuX the following ligand strength series was determined: MeOH≪hex‐3‐yne <MeCN≈OTf−≪Me2S<2,6‐lutidine<4‐picoline<CF3CO2−≈DMAP<TMTU<PPh3<OH−≈Cl−. Some heteroligand complexes DTBPAuX exist in solution in equilibrium with the corresponding symmetrical species. Binuclear complexes dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 showed different behavior in exchange reactions with ligands depending on the ligand strength. Thus, PPh3 causes ion of one gold atom to give mononuclear complexes LLAuPPh3+ and (Ph3P)nAu+, but other N and S ligands give ordinary dicationic species LL(AuNu)22+. In reactions with different bases, LAu+ provided new oxonium ions whose chemistry was also studied: (DTBPAu)3O+, (L2Au)2OH+, (L2Au)3O+, (L3Au)2OH+, and (IMesAu)2OH+. Ultimately, formation of gold hydroxide LAuOH (L=L2, L3, IMes) was studied. Ligand‐ or base‐assisted interconversions between (L2Au)2OH+, (L2Au)3O+, and L2AuOH are described. Reactions of dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 with bases provided more interesting oxonium ions, whose molecular composition was found to be [dppf(Au)2]3O22+, L8(Au)2OH+, and [L8(Au)2]3O22+, but their exact structure was not established. Several reactions between different oxonium species were conducted to observe mixed heteroligand oxonium species. Reaction of L2AuNCMe+ with S2− was studied; several new complexes with sulfide are described. For many reversible reactions the corresponding equilibrium constants were determined. Diving in a gold solution: A detailed exploration of the coordination chemistry of eight gold catalysts by NMR spectroscopy in solution was conducted. This covered ligand‐exchange reactions, formation and transformation of different oxonium salts, and complexes with sulfide.]]></description><subject>Chemistry</subject><subject>Gold</subject><subject>ligand effects</subject><subject>ligand exchange</subject><subject>Ligands</subject><subject>NMR spectroscopy</subject><subject>oxonium ions</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhyhFZ4sIly4yd2DG3Ki1b6AeI8nWzvLEtUrJxsRO1-fd4tWWFuKCxNJfnfTV6TMhzhCUCsNftD7dZMsDtw-oBWWDFsOBSVA_JAlQpC1FxdUCepHQNAEpw_pgcMA5YV4wvyPsmhGi7wYxdGGiT27o0xpkGT1eht7Qxo-nnNCbaDfQq9NOWe0OP6LEbTdc7Sy8vPtGrcbLzU_LImz65Z_f7kHx5e_K5OS3OP6zeNUfnRVtKWRUShFVWupaptuQKWSnbioEHUQvjHeKag0UrBXibh9d1vfZrh8oDcPSKH5JXu96bGH5NLo0639y6vjeDC1PSiCWvGUOBGX35D3odpjjk6zLFVYm8kjxTyx3VxpBSdF7fxG5j4qwR9Nay3lrWe8s58OK-dlpvnN3jf7RmQO2A26xo_k-dbk5PLv4uL3bZ_BHubp818acWkstKf7tc6e-1PPv4Fc50zX8D5OaVrA</recordid><startdate>20121112</startdate><enddate>20121112</enddate><creator>Zhdanko, Alexander</creator><creator>Ströbele, Markus</creator><creator>Maier, Martin E.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20121112</creationdate><title>Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study</title><author>Zhdanko, Alexander ; Ströbele, Markus ; Maier, Martin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4775-706d9d7ec29c4391247c520f0686afe11b30d1d760fdfdf3888bfbe19f0031f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Gold</topic><topic>ligand effects</topic><topic>ligand exchange</topic><topic>Ligands</topic><topic>NMR spectroscopy</topic><topic>oxonium ions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhdanko, Alexander</creatorcontrib><creatorcontrib>Ströbele, Markus</creatorcontrib><creatorcontrib>Maier, Martin E.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhdanko, Alexander</au><au>Ströbele, Markus</au><au>Maier, Martin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2012-11-12</date><risdate>2012</risdate><volume>18</volume><issue>46</issue><spage>14732</spage><epage>14744</epage><pages>14732-14744</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract><![CDATA[Coordination chemistry of gold catalysts bearing eight different ligands [L=PPh3, JohnPhos (L2), Xphos (L3), DTBP, IMes, IPr, dppf, S‐tolBINAP (L8)] has been studied by NMR spectroscopy in solution at room temperature. Cationic or neutral mononuclear complexes LAuX (L=L2, L3, IMes, IPr; X=charged or neutral ligand) underwent simple ligand exchange without giving any higher coordinate complexes. For L2AuX the following ligand strength series was determined: MeOH≪hex‐3‐yne <MeCN≈OTf−≪Me2S<2,6‐lutidine<4‐picoline<CF3CO2−≈DMAP<TMTU<PPh3<OH−≈Cl−. Some heteroligand complexes DTBPAuX exist in solution in equilibrium with the corresponding symmetrical species. Binuclear complexes dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 showed different behavior in exchange reactions with ligands depending on the ligand strength. Thus, PPh3 causes ion of one gold atom to give mononuclear complexes LLAuPPh3+ and (Ph3P)nAu+, but other N and S ligands give ordinary dicationic species LL(AuNu)22+. In reactions with different bases, LAu+ provided new oxonium ions whose chemistry was also studied: (DTBPAu)3O+, (L2Au)2OH+, (L2Au)3O+, (L3Au)2OH+, and (IMesAu)2OH+. Ultimately, formation of gold hydroxide LAuOH (L=L2, L3, IMes) was studied. Ligand‐ or base‐assisted interconversions between (L2Au)2OH+, (L2Au)3O+, and L2AuOH are described. Reactions of dppf(AuOTf)2 and S‐tolBINAP(AuOTf)2 with bases provided more interesting oxonium ions, whose molecular composition was found to be [dppf(Au)2]3O22+, L8(Au)2OH+, and [L8(Au)2]3O22+, but their exact structure was not established. Several reactions between different oxonium species were conducted to observe mixed heteroligand oxonium species. Reaction of L2AuNCMe+ with S2− was studied; several new complexes with sulfide are described. For many reversible reactions the corresponding equilibrium constants were determined. Diving in a gold solution: A detailed exploration of the coordination chemistry of eight gold catalysts by NMR spectroscopy in solution was conducted. This covered ligand‐exchange reactions, formation and transformation of different oxonium salts, and complexes with sulfide.]]></abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23018523</pmid><doi>10.1002/chem.201201215</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2012-11, Vol.18 (46), p.14732-14744
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1143822161
source Wiley Online Library Journals Frontfile Complete
subjects Chemistry
Gold
ligand effects
ligand exchange
Ligands
NMR spectroscopy
oxonium ions
title Coordination Chemistry of Gold Catalysts in Solution: A Detailed NMR Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20Chemistry%20of%20Gold%20Catalysts%20in%20Solution:%20A%20Detailed%20NMR%20Study&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Zhdanko,%20Alexander&rft.date=2012-11-12&rft.volume=18&rft.issue=46&rft.spage=14732&rft.epage=14744&rft.pages=14732-14744&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201201215&rft_dat=%3Cproquest_cross%3E2808710821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139413573&rft_id=info:pmid/23018523&rfr_iscdi=true