Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach
In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an...
Gespeichert in:
Veröffentlicht in: | Control engineering practice 2012-11, Vol.20 (11), p.1156-1164 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 11 |
container_start_page | 1156 |
container_title | Control engineering practice |
container_volume | 20 |
creator | Lopes dos Santos, P. A. Ramos, José Martins de Carvalho, J.L. |
description | In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm. |
doi_str_mv | 10.1016/j.conengprac.2012.04.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136574420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096706611200086X</els_id><sourcerecordid>1136574420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</originalsourceid><addsrcrecordid>eNqFkLlOAzEQhi0EEuF4B5c0u4z3cHbpSMQRCYkGRGn5GBOHXW-wN0h0vANvyJNgFBB0VFP8x-j_CKEMcgaMn65yPXj0j-sgdV4AK3KocoBih0xYMy0z3pbtLplAy6cZcM72yUGMK0jRtmUTslwY9KOzTsvRDZ4Olko6Q6-XvQxP9MGhx_Dx9n4t-x5DHNH5M3pOleucRxmo9Ib-0ZJz9iP1g8GOyvU6DFIvj8ielV3E4-97SO4vL-7m19nN7dVifn6T6bJmY2ZVpRqlddsoDpZJMG3TlNIWyirOJYBtTK3NVKuS1zUgGGUYk01a2Sosi_KQnGx709vnDcZR9C5q7DrpcdhEwVgKTquqgGRttlYdhhgDWrEOLs1-FQzEF1yxEr9wxRdcAZVIcFN0to1imvLiMIioEyqNxgXUozCD-7_kE651jAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136574420</pqid></control><display><type>article</type><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</creator><creatorcontrib>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</creatorcontrib><description>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2012.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Benchmarking ; Bilinear systems ; Discrete systems ; Iterative methods ; Mathematical analysis ; Mathematical models ; Nonlinear systems ; Sate-space models ; Subspace methods ; Subspaces ; System identification</subject><ispartof>Control engineering practice, 2012-11, Vol.20 (11), p.1156-1164</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</citedby><cites>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096706611200086X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lopes dos Santos, P.</creatorcontrib><creatorcontrib>A. Ramos, José</creatorcontrib><creatorcontrib>Martins de Carvalho, J.L.</creatorcontrib><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><title>Control engineering practice</title><description>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Benchmarking</subject><subject>Bilinear systems</subject><subject>Discrete systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Sate-space models</subject><subject>Subspace methods</subject><subject>Subspaces</subject><subject>System identification</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkLlOAzEQhi0EEuF4B5c0u4z3cHbpSMQRCYkGRGn5GBOHXW-wN0h0vANvyJNgFBB0VFP8x-j_CKEMcgaMn65yPXj0j-sgdV4AK3KocoBih0xYMy0z3pbtLplAy6cZcM72yUGMK0jRtmUTslwY9KOzTsvRDZ4Olko6Q6-XvQxP9MGhx_Dx9n4t-x5DHNH5M3pOleucRxmo9Ib-0ZJz9iP1g8GOyvU6DFIvj8ielV3E4-97SO4vL-7m19nN7dVifn6T6bJmY2ZVpRqlddsoDpZJMG3TlNIWyirOJYBtTK3NVKuS1zUgGGUYk01a2Sosi_KQnGx709vnDcZR9C5q7DrpcdhEwVgKTquqgGRttlYdhhgDWrEOLs1-FQzEF1yxEr9wxRdcAZVIcFN0to1imvLiMIioEyqNxgXUozCD-7_kE651jAs</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Lopes dos Santos, P.</creator><creator>A. Ramos, José</creator><creator>Martins de Carvalho, J.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><author>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Benchmarking</topic><topic>Bilinear systems</topic><topic>Discrete systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Sate-space models</topic><topic>Subspace methods</topic><topic>Subspaces</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes dos Santos, P.</creatorcontrib><creatorcontrib>A. Ramos, José</creatorcontrib><creatorcontrib>Martins de Carvalho, J.L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes dos Santos, P.</au><au>A. Ramos, José</au><au>Martins de Carvalho, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</atitle><jtitle>Control engineering practice</jtitle><date>2012-11</date><risdate>2012</risdate><volume>20</volume><issue>11</issue><spage>1156</spage><epage>1164</epage><pages>1156-1164</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2012.04.002</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0661 |
ispartof | Control engineering practice, 2012-11, Vol.20 (11), p.1156-1164 |
issn | 0967-0661 1873-6939 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136574420 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Approximation Benchmarking Bilinear systems Discrete systems Iterative methods Mathematical analysis Mathematical models Nonlinear systems Sate-space models Subspace methods Subspaces System identification |
title | Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Benchmark%20Wiener%E2%80%93Hammerstein:%20A%20bilinear%20and%20Hammerstein%E2%80%93Bilinear%20model%20approach&rft.jtitle=Control%20engineering%20practice&rft.au=Lopes%20dos%20Santos,%20P.&rft.date=2012-11&rft.volume=20&rft.issue=11&rft.spage=1156&rft.epage=1164&rft.pages=1156-1164&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2012.04.002&rft_dat=%3Cproquest_cross%3E1136574420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136574420&rft_id=info:pmid/&rft_els_id=S096706611200086X&rfr_iscdi=true |