Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach

In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2012-11, Vol.20 (11), p.1156-1164
Hauptverfasser: Lopes dos Santos, P., A. Ramos, José, Martins de Carvalho, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 11
container_start_page 1156
container_title Control engineering practice
container_volume 20
creator Lopes dos Santos, P.
A. Ramos, José
Martins de Carvalho, J.L.
description In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.
doi_str_mv 10.1016/j.conengprac.2012.04.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136574420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096706611200086X</els_id><sourcerecordid>1136574420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</originalsourceid><addsrcrecordid>eNqFkLlOAzEQhi0EEuF4B5c0u4z3cHbpSMQRCYkGRGn5GBOHXW-wN0h0vANvyJNgFBB0VFP8x-j_CKEMcgaMn65yPXj0j-sgdV4AK3KocoBih0xYMy0z3pbtLplAy6cZcM72yUGMK0jRtmUTslwY9KOzTsvRDZ4Olko6Q6-XvQxP9MGhx_Dx9n4t-x5DHNH5M3pOleucRxmo9Ib-0ZJz9iP1g8GOyvU6DFIvj8ielV3E4-97SO4vL-7m19nN7dVifn6T6bJmY2ZVpRqlddsoDpZJMG3TlNIWyirOJYBtTK3NVKuS1zUgGGUYk01a2Sosi_KQnGx709vnDcZR9C5q7DrpcdhEwVgKTquqgGRttlYdhhgDWrEOLs1-FQzEF1yxEr9wxRdcAZVIcFN0to1imvLiMIioEyqNxgXUozCD-7_kE651jAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136574420</pqid></control><display><type>article</type><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</creator><creatorcontrib>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</creatorcontrib><description>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2012.04.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Benchmarking ; Bilinear systems ; Discrete systems ; Iterative methods ; Mathematical analysis ; Mathematical models ; Nonlinear systems ; Sate-space models ; Subspace methods ; Subspaces ; System identification</subject><ispartof>Control engineering practice, 2012-11, Vol.20 (11), p.1156-1164</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</citedby><cites>FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096706611200086X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lopes dos Santos, P.</creatorcontrib><creatorcontrib>A. Ramos, José</creatorcontrib><creatorcontrib>Martins de Carvalho, J.L.</creatorcontrib><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><title>Control engineering practice</title><description>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Benchmarking</subject><subject>Bilinear systems</subject><subject>Discrete systems</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear systems</subject><subject>Sate-space models</subject><subject>Subspace methods</subject><subject>Subspaces</subject><subject>System identification</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkLlOAzEQhi0EEuF4B5c0u4z3cHbpSMQRCYkGRGn5GBOHXW-wN0h0vANvyJNgFBB0VFP8x-j_CKEMcgaMn65yPXj0j-sgdV4AK3KocoBih0xYMy0z3pbtLplAy6cZcM72yUGMK0jRtmUTslwY9KOzTsvRDZ4Olko6Q6-XvQxP9MGhx_Dx9n4t-x5DHNH5M3pOleucRxmo9Ib-0ZJz9iP1g8GOyvU6DFIvj8ielV3E4-97SO4vL-7m19nN7dVifn6T6bJmY2ZVpRqlddsoDpZJMG3TlNIWyirOJYBtTK3NVKuS1zUgGGUYk01a2Sosi_KQnGx709vnDcZR9C5q7DrpcdhEwVgKTquqgGRttlYdhhgDWrEOLs1-FQzEF1yxEr9wxRdcAZVIcFN0to1imvLiMIioEyqNxgXUozCD-7_kE651jAs</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Lopes dos Santos, P.</creator><creator>A. Ramos, José</creator><creator>Martins de Carvalho, J.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</title><author>Lopes dos Santos, P. ; A. Ramos, José ; Martins de Carvalho, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fb4b8bcc98b60f1a0d9883af2bfb66a00f8d5cd7cb36550e0dbd11a89399be323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Benchmarking</topic><topic>Bilinear systems</topic><topic>Discrete systems</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear systems</topic><topic>Sate-space models</topic><topic>Subspace methods</topic><topic>Subspaces</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes dos Santos, P.</creatorcontrib><creatorcontrib>A. Ramos, José</creatorcontrib><creatorcontrib>Martins de Carvalho, J.L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes dos Santos, P.</au><au>A. Ramos, José</au><au>Martins de Carvalho, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach</atitle><jtitle>Control engineering practice</jtitle><date>2012-11</date><risdate>2012</risdate><volume>20</volume><issue>11</issue><spage>1156</spage><epage>1164</epage><pages>1156-1164</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>In this paper the Wiener–Hammerstein Benchmark is identified as a bilinear discrete system. The bilinear approximation relies on both facts that the Wiener–Hammerstein system can be described by a Volterra series which can be approximated by bilinear systems. The identification is performed with an iterative bilinear subspace identification algorithm previously proposed by the authors. In order to increase accuracy, polynomial static nonlinearities were added to the bilinear model input. These Hammerstein type bilinear models are then identified using the same iterative subspace identification algorithm.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2012.04.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-0661
ispartof Control engineering practice, 2012-11, Vol.20 (11), p.1156-1164
issn 0967-0661
1873-6939
language eng
recordid cdi_proquest_miscellaneous_1136574420
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Approximation
Benchmarking
Bilinear systems
Discrete systems
Iterative methods
Mathematical analysis
Mathematical models
Nonlinear systems
Sate-space models
Subspace methods
Subspaces
System identification
title Identification of a Benchmark Wiener–Hammerstein: A bilinear and Hammerstein–Bilinear model approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Benchmark%20Wiener%E2%80%93Hammerstein:%20A%20bilinear%20and%20Hammerstein%E2%80%93Bilinear%20model%20approach&rft.jtitle=Control%20engineering%20practice&rft.au=Lopes%20dos%20Santos,%20P.&rft.date=2012-11&rft.volume=20&rft.issue=11&rft.spage=1156&rft.epage=1164&rft.pages=1156-1164&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2012.04.002&rft_dat=%3Cproquest_cross%3E1136574420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136574420&rft_id=info:pmid/&rft_els_id=S096706611200086X&rfr_iscdi=true