Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method

Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2012-11, Vol.51 (6), p.808-820
Hauptverfasser: Wang, Qi, Wang, Huaxiang, Cui, Ziqiang, Yang, Chengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 6
container_start_page 808
container_title ISA transactions
container_volume 51
creator Wang, Qi
Wang, Huaxiang
Cui, Ziqiang
Yang, Chengyi
description Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. ► The expectation maximization method is used to solve the inverse problem for EIT. ► The mathematical model of EIT is transformed to likelihood minimization problem. ► The noise level of the measurement system is considered as prior information. ► The EM method can obtain a non-negative solution and low image distortion. ► The EM method is robust to measurement noise.
doi_str_mv 10.1016/j.isatra.2012.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136563802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057812000596</els_id><sourcerecordid>1136563802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-f862da2e84a9372210a6d5272547efbabf4148fbb9143cf75e23fb1383018bea3</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EotPCGyDkDVK7SOq_xM4GCVVtqVRUCZW15TjXHQ_JONgOat--HmaAHay8uOe7vvoOQu8oqSmh7fmm9snkaGpGKKuJqAmlL9CKKtlVjDD2Eq0IoV1FGqmO0HFKG0IIazr1Gh0x1raCN3yFvn8FG7Ypx8VmH7Y4OAwj2By9NSP20wyD2VrAOUzhIZp5_YRPL2_uz8rIPEDCvUkw4BLMa8DwOJeo-bVoMo9-WqZCfznDE-R1GN6gV86MCd4e3hP07ery_uJzdXt3fXPx6baygjW5cqplg2GghOm4ZIwS0w4Nk6wRElxveieoUK7vOyq4dbIBxl1PueKEqh4MP0Gn-71zDD8WSFlPPlkYR7OFsCRNKW-blivC_o8SQUtrqpMFFXvUxpBSBKfnWEqITwXSOyN6o_dG9M6IJkIXIyX2_vDD0k8w_An9VlCADwfApNK5i6Vvn_5yLZctlbtTP-45KNX99BB1sh6Km8HH0roegv_3Jc-S6arJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041002897</pqid></control><display><type>article</type><title>Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Qi ; Wang, Huaxiang ; Cui, Ziqiang ; Yang, Chengyi</creator><creatorcontrib>Wang, Qi ; Wang, Huaxiang ; Cui, Ziqiang ; Yang, Chengyi</creatorcontrib><description>Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. ► The expectation maximization method is used to solve the inverse problem for EIT. ► The mathematical model of EIT is transformed to likelihood minimization problem. ► The noise level of the measurement system is considered as prior information. ► The EM method can obtain a non-negative solution and low image distortion. ► The EM method is robust to measurement noise.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2012.04.011</identifier><identifier>PMID: 22664353</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computer Simulation ; Control theory. Systems ; Cross-disciplinary physics: materials science; rheology ; Diagnosis, Computer-Assisted - methods ; Electrical impedance ; Electrical impedance tomography (EIT) ; Exact sciences and technology ; Expectation maximization (EM) method ; Humans ; Image reconstruction ; Inverse problems ; Likelihood Functions ; Materials science ; Materials testing ; Mathematical analysis ; Mathematical models ; Maximization ; Modelling and identification ; Models, Biological ; Models, Statistical ; Pattern recognition. Digital image processing. Computational geometry ; Physics ; Plethysmography, Impedance - methods ; Statistical method ; Statistical methods ; Tomography</subject><ispartof>ISA transactions, 2012-11, Vol.51 (6), p.808-820</ispartof><rights>2012 ISA</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-f862da2e84a9372210a6d5272547efbabf4148fbb9143cf75e23fb1383018bea3</citedby><cites>FETCH-LOGICAL-c425t-f862da2e84a9372210a6d5272547efbabf4148fbb9143cf75e23fb1383018bea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2012.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26376172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22664353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Huaxiang</creatorcontrib><creatorcontrib>Cui, Ziqiang</creatorcontrib><creatorcontrib>Yang, Chengyi</creatorcontrib><title>Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. ► The expectation maximization method is used to solve the inverse problem for EIT. ► The mathematical model of EIT is transformed to likelihood minimization problem. ► The noise level of the measurement system is considered as prior information. ► The EM method can obtain a non-negative solution and low image distortion. ► The EM method is robust to measurement noise.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control theory. Systems</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography (EIT)</subject><subject>Exact sciences and technology</subject><subject>Expectation maximization (EM) method</subject><subject>Humans</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Likelihood Functions</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Modelling and identification</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Physics</subject><subject>Plethysmography, Impedance - methods</subject><subject>Statistical method</subject><subject>Statistical methods</subject><subject>Tomography</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi0EotPCGyDkDVK7SOq_xM4GCVVtqVRUCZW15TjXHQ_JONgOat--HmaAHay8uOe7vvoOQu8oqSmh7fmm9snkaGpGKKuJqAmlL9CKKtlVjDD2Eq0IoV1FGqmO0HFKG0IIazr1Gh0x1raCN3yFvn8FG7Ypx8VmH7Y4OAwj2By9NSP20wyD2VrAOUzhIZp5_YRPL2_uz8rIPEDCvUkw4BLMa8DwOJeo-bVoMo9-WqZCfznDE-R1GN6gV86MCd4e3hP07ery_uJzdXt3fXPx6baygjW5cqplg2GghOm4ZIwS0w4Nk6wRElxveieoUK7vOyq4dbIBxl1PueKEqh4MP0Gn-71zDD8WSFlPPlkYR7OFsCRNKW-blivC_o8SQUtrqpMFFXvUxpBSBKfnWEqITwXSOyN6o_dG9M6IJkIXIyX2_vDD0k8w_An9VlCADwfApNK5i6Vvn_5yLZctlbtTP-45KNX99BB1sh6Km8HH0roegv_3Jc-S6arJ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Wang, Qi</creator><creator>Wang, Huaxiang</creator><creator>Cui, Ziqiang</creator><creator>Yang, Chengyi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method</title><author>Wang, Qi ; Wang, Huaxiang ; Cui, Ziqiang ; Yang, Chengyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-f862da2e84a9372210a6d5272547efbabf4148fbb9143cf75e23fb1383018bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control theory. Systems</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography (EIT)</topic><topic>Exact sciences and technology</topic><topic>Expectation maximization (EM) method</topic><topic>Humans</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Likelihood Functions</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Modelling and identification</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Physics</topic><topic>Plethysmography, Impedance - methods</topic><topic>Statistical method</topic><topic>Statistical methods</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Wang, Huaxiang</creatorcontrib><creatorcontrib>Cui, Ziqiang</creatorcontrib><creatorcontrib>Yang, Chengyi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Wang, Huaxiang</au><au>Cui, Ziqiang</au><au>Yang, Chengyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>51</volume><issue>6</issue><spage>808</spage><epage>820</epage><pages>808-820</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. ► The expectation maximization method is used to solve the inverse problem for EIT. ► The mathematical model of EIT is transformed to likelihood minimization problem. ► The noise level of the measurement system is considered as prior information. ► The EM method can obtain a non-negative solution and low image distortion. ► The EM method is robust to measurement noise.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22664353</pmid><doi>10.1016/j.isatra.2012.04.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2012-11, Vol.51 (6), p.808-820
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1136563802
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computer Simulation
Control theory. Systems
Cross-disciplinary physics: materials science
rheology
Diagnosis, Computer-Assisted - methods
Electrical impedance
Electrical impedance tomography (EIT)
Exact sciences and technology
Expectation maximization (EM) method
Humans
Image reconstruction
Inverse problems
Likelihood Functions
Materials science
Materials testing
Mathematical analysis
Mathematical models
Maximization
Modelling and identification
Models, Biological
Models, Statistical
Pattern recognition. Digital image processing. Computational geometry
Physics
Plethysmography, Impedance - methods
Statistical method
Statistical methods
Tomography
title Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20electrical%20impedance%20tomography%20(EIT)%20images%20based%20on%20the%20expectation%20maximum%20(EM)%20method&rft.jtitle=ISA%20transactions&rft.au=Wang,%20Qi&rft.date=2012-11-01&rft.volume=51&rft.issue=6&rft.spage=808&rft.epage=820&rft.pages=808-820&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2012.04.011&rft_dat=%3Cproquest_cross%3E1136563802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041002897&rft_id=info:pmid/22664353&rft_els_id=S0019057812000596&rfr_iscdi=true