Output feedback trajectory stabilization of the uncertainty DC servomechanism system
This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative co...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2012-11, Vol.51 (6), p.801-807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 6 |
container_start_page | 801 |
container_title | ISA transactions |
container_volume | 51 |
creator | Aguilar-Ibañez, Carlos Garrido-Moctezuma, Ruben Davila, Jorge |
description | This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.
► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method. |
doi_str_mv | 10.1016/j.isatra.2012.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136563764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057812000948</els_id><sourcerecordid>1136563764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvLP0DIFyQuCTOOkzgXJLR8SpV6ac-W44xVL_lYbKfS9tfj1S5wo6e5PPPOq2cYe4NQImDzYVf6aFIwpQAUJTQlYP2MbVC1XSFAiOdsA4BdAXWrLtirGHcAIOpOvWQXQiglse027PZmTfs1cUc09Mb-5DlxRzYt4cBjMr0f_aNJfpn54ni6J77OlkIyfk4H_nnLI4WHZSJ7b2YfJx4PMdF0xV44M0Z6fZ6X7O7rl9vt9-L65tuP7afrwkpRp6KVtejBVpKobxTZZqh6R7UwrYXKWkLqwNlcuZeOOod9Td1gOkRUFlC56pK9P-Xuw_JrpZj05KOlcTQzLWvUiFVTN1XbyKdRkJj1SNVmVJ5QG5YYAzm9D34y4ZAhfVSvd_qkXh_Va2h0Vp_X3p4vrP1Ew9-lP64z8O4MmGjN6IKZrY__uGNRbDFzH08cZXUPnoKO1lPWPviQP6OHxf-_yW9GMKUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041002487</pqid></control><display><type>article</type><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</creator><creatorcontrib>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</creatorcontrib><description>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.
► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2012.06.015</identifier><identifier>PMID: 22884179</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer Simulation ; Control system analysis ; Control system synthesis ; Control theory. Systems ; D.c. Machines ; Direct current ; Electrical engineering. Electrical power engineering ; Electrical machines ; Exact sciences and technology ; Feedback ; Finite time observer ; Mathematical models ; Modelling and identification ; Models, Statistical ; Output feedback ; PD controller ; Pendulums ; Servomechanism ; Servomechanisms ; Stabilization ; Trajectories ; Transducers ; Variable structure control</subject><ispartof>ISA transactions, 2012-11, Vol.51 (6), p.801-807</ispartof><rights>2012 ISA</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</citedby><cites>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057812000948$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26376171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22884179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguilar-Ibañez, Carlos</creatorcontrib><creatorcontrib>Garrido-Moctezuma, Ruben</creatorcontrib><creatorcontrib>Davila, Jorge</creatorcontrib><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.
► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control system analysis</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>D.c. Machines</subject><subject>Direct current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Finite time observer</subject><subject>Mathematical models</subject><subject>Modelling and identification</subject><subject>Models, Statistical</subject><subject>Output feedback</subject><subject>PD controller</subject><subject>Pendulums</subject><subject>Servomechanism</subject><subject>Servomechanisms</subject><subject>Stabilization</subject><subject>Trajectories</subject><subject>Transducers</subject><subject>Variable structure control</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvLP0DIFyQuCTOOkzgXJLR8SpV6ac-W44xVL_lYbKfS9tfj1S5wo6e5PPPOq2cYe4NQImDzYVf6aFIwpQAUJTQlYP2MbVC1XSFAiOdsA4BdAXWrLtirGHcAIOpOvWQXQiglse027PZmTfs1cUc09Mb-5DlxRzYt4cBjMr0f_aNJfpn54ni6J77OlkIyfk4H_nnLI4WHZSJ7b2YfJx4PMdF0xV44M0Z6fZ6X7O7rl9vt9-L65tuP7afrwkpRp6KVtejBVpKobxTZZqh6R7UwrYXKWkLqwNlcuZeOOod9Td1gOkRUFlC56pK9P-Xuw_JrpZj05KOlcTQzLWvUiFVTN1XbyKdRkJj1SNVmVJ5QG5YYAzm9D34y4ZAhfVSvd_qkXh_Va2h0Vp_X3p4vrP1Ew9-lP64z8O4MmGjN6IKZrY__uGNRbDFzH08cZXUPnoKO1lPWPviQP6OHxf-_yW9GMKUc</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Aguilar-Ibañez, Carlos</creator><creator>Garrido-Moctezuma, Ruben</creator><creator>Davila, Jorge</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><author>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control system analysis</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>D.c. Machines</topic><topic>Direct current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Finite time observer</topic><topic>Mathematical models</topic><topic>Modelling and identification</topic><topic>Models, Statistical</topic><topic>Output feedback</topic><topic>PD controller</topic><topic>Pendulums</topic><topic>Servomechanism</topic><topic>Servomechanisms</topic><topic>Stabilization</topic><topic>Trajectories</topic><topic>Transducers</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-Ibañez, Carlos</creatorcontrib><creatorcontrib>Garrido-Moctezuma, Ruben</creatorcontrib><creatorcontrib>Davila, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar-Ibañez, Carlos</au><au>Garrido-Moctezuma, Ruben</au><au>Davila, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>51</volume><issue>6</issue><spage>801</spage><epage>807</epage><pages>801-807</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.
► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22884179</pmid><doi>10.1016/j.isatra.2012.06.015</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2012-11, Vol.51 (6), p.801-807 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136563764 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Computer science control theory systems Computer Simulation Control system analysis Control system synthesis Control theory. Systems D.c. Machines Direct current Electrical engineering. Electrical power engineering Electrical machines Exact sciences and technology Feedback Finite time observer Mathematical models Modelling and identification Models, Statistical Output feedback PD controller Pendulums Servomechanism Servomechanisms Stabilization Trajectories Transducers Variable structure control |
title | Output feedback trajectory stabilization of the uncertainty DC servomechanism system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Output%20feedback%20trajectory%20stabilization%20of%20the%20uncertainty%20DC%20servomechanism%20system&rft.jtitle=ISA%20transactions&rft.au=Aguilar-Iba%C3%B1ez,%20Carlos&rft.date=2012-11-01&rft.volume=51&rft.issue=6&rft.spage=801&rft.epage=807&rft.pages=801-807&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2012.06.015&rft_dat=%3Cproquest_cross%3E1136563764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041002487&rft_id=info:pmid/22884179&rft_els_id=S0019057812000948&rfr_iscdi=true |