Output feedback trajectory stabilization of the uncertainty DC servomechanism system

This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2012-11, Vol.51 (6), p.801-807
Hauptverfasser: Aguilar-Ibañez, Carlos, Garrido-Moctezuma, Ruben, Davila, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 6
container_start_page 801
container_title ISA transactions
container_volume 51
creator Aguilar-Ibañez, Carlos
Garrido-Moctezuma, Ruben
Davila, Jorge
description This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system. ► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.
doi_str_mv 10.1016/j.isatra.2012.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136563764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057812000948</els_id><sourcerecordid>1136563764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvLP0DIFyQuCTOOkzgXJLR8SpV6ac-W44xVL_lYbKfS9tfj1S5wo6e5PPPOq2cYe4NQImDzYVf6aFIwpQAUJTQlYP2MbVC1XSFAiOdsA4BdAXWrLtirGHcAIOpOvWQXQiglse027PZmTfs1cUc09Mb-5DlxRzYt4cBjMr0f_aNJfpn54ni6J77OlkIyfk4H_nnLI4WHZSJ7b2YfJx4PMdF0xV44M0Z6fZ6X7O7rl9vt9-L65tuP7afrwkpRp6KVtejBVpKobxTZZqh6R7UwrYXKWkLqwNlcuZeOOod9Td1gOkRUFlC56pK9P-Xuw_JrpZj05KOlcTQzLWvUiFVTN1XbyKdRkJj1SNVmVJ5QG5YYAzm9D34y4ZAhfVSvd_qkXh_Va2h0Vp_X3p4vrP1Ew9-lP64z8O4MmGjN6IKZrY__uGNRbDFzH08cZXUPnoKO1lPWPviQP6OHxf-_yW9GMKUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041002487</pqid></control><display><type>article</type><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</creator><creatorcontrib>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</creatorcontrib><description>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system. ► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2012.06.015</identifier><identifier>PMID: 22884179</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Computer Simulation ; Control system analysis ; Control system synthesis ; Control theory. Systems ; D.c. Machines ; Direct current ; Electrical engineering. Electrical power engineering ; Electrical machines ; Exact sciences and technology ; Feedback ; Finite time observer ; Mathematical models ; Modelling and identification ; Models, Statistical ; Output feedback ; PD controller ; Pendulums ; Servomechanism ; Servomechanisms ; Stabilization ; Trajectories ; Transducers ; Variable structure control</subject><ispartof>ISA transactions, 2012-11, Vol.51 (6), p.801-807</ispartof><rights>2012 ISA</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</citedby><cites>FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057812000948$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26376171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22884179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguilar-Ibañez, Carlos</creatorcontrib><creatorcontrib>Garrido-Moctezuma, Ruben</creatorcontrib><creatorcontrib>Davila, Jorge</creatorcontrib><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system. ► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control system analysis</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>D.c. Machines</subject><subject>Direct current</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical machines</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Finite time observer</subject><subject>Mathematical models</subject><subject>Modelling and identification</subject><subject>Models, Statistical</subject><subject>Output feedback</subject><subject>PD controller</subject><subject>Pendulums</subject><subject>Servomechanism</subject><subject>Servomechanisms</subject><subject>Stabilization</subject><subject>Trajectories</subject><subject>Transducers</subject><subject>Variable structure control</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvLP0DIFyQuCTOOkzgXJLR8SpV6ac-W44xVL_lYbKfS9tfj1S5wo6e5PPPOq2cYe4NQImDzYVf6aFIwpQAUJTQlYP2MbVC1XSFAiOdsA4BdAXWrLtirGHcAIOpOvWQXQiglse027PZmTfs1cUc09Mb-5DlxRzYt4cBjMr0f_aNJfpn54ni6J77OlkIyfk4H_nnLI4WHZSJ7b2YfJx4PMdF0xV44M0Z6fZ6X7O7rl9vt9-L65tuP7afrwkpRp6KVtejBVpKobxTZZqh6R7UwrYXKWkLqwNlcuZeOOod9Td1gOkRUFlC56pK9P-Xuw_JrpZj05KOlcTQzLWvUiFVTN1XbyKdRkJj1SNVmVJ5QG5YYAzm9D34y4ZAhfVSvd_qkXh_Va2h0Vp_X3p4vrP1Ew9-lP64z8O4MmGjN6IKZrY__uGNRbDFzH08cZXUPnoKO1lPWPviQP6OHxf-_yW9GMKUc</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Aguilar-Ibañez, Carlos</creator><creator>Garrido-Moctezuma, Ruben</creator><creator>Davila, Jorge</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</title><author>Aguilar-Ibañez, Carlos ; Garrido-Moctezuma, Ruben ; Davila, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-7452b0c34eeb68ec6d3bfe52a7c03cce1e90fc259b4fe9f1b5e9da91118c018f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control system analysis</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>D.c. Machines</topic><topic>Direct current</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical machines</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Finite time observer</topic><topic>Mathematical models</topic><topic>Modelling and identification</topic><topic>Models, Statistical</topic><topic>Output feedback</topic><topic>PD controller</topic><topic>Pendulums</topic><topic>Servomechanism</topic><topic>Servomechanisms</topic><topic>Stabilization</topic><topic>Trajectories</topic><topic>Transducers</topic><topic>Variable structure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-Ibañez, Carlos</creatorcontrib><creatorcontrib>Garrido-Moctezuma, Ruben</creatorcontrib><creatorcontrib>Davila, Jorge</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar-Ibañez, Carlos</au><au>Garrido-Moctezuma, Ruben</au><au>Davila, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Output feedback trajectory stabilization of the uncertainty DC servomechanism system</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>51</volume><issue>6</issue><spage>801</spage><epage>807</epage><pages>801-807</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system. ► The output feedback trajectory tracking in a DC uncertain servomechanism system was solved. ► The system consists of a pendulum actuated by a DC motor subject to a variable bounded disturbance. ► A second-order sliding-mode observer is used to estimate the unavailable velocity. ► The convergence analysis was carried out by means of the Lyapunov method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22884179</pmid><doi>10.1016/j.isatra.2012.06.015</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2012-11, Vol.51 (6), p.801-807
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1136563764
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Computer Simulation
Control system analysis
Control system synthesis
Control theory. Systems
D.c. Machines
Direct current
Electrical engineering. Electrical power engineering
Electrical machines
Exact sciences and technology
Feedback
Finite time observer
Mathematical models
Modelling and identification
Models, Statistical
Output feedback
PD controller
Pendulums
Servomechanism
Servomechanisms
Stabilization
Trajectories
Transducers
Variable structure control
title Output feedback trajectory stabilization of the uncertainty DC servomechanism system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Output%20feedback%20trajectory%20stabilization%20of%20the%20uncertainty%20DC%20servomechanism%20system&rft.jtitle=ISA%20transactions&rft.au=Aguilar-Iba%C3%B1ez,%20Carlos&rft.date=2012-11-01&rft.volume=51&rft.issue=6&rft.spage=801&rft.epage=807&rft.pages=801-807&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2012.06.015&rft_dat=%3Cproquest_cross%3E1136563764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041002487&rft_id=info:pmid/22884179&rft_els_id=S0019057812000948&rfr_iscdi=true