Analysis and architecture design of scalable fractional motion estimation for H.264 encoding

Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding standard. The algorithm can significantly increase the compression ratio of video encoders while improving video quality. However, it is computationally expensive and can consist of over 45% of the total motion e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integration (Amsterdam) 2012-09, Vol.45 (4), p.427-438
Hauptverfasser: Vasiljevic, Jasmina, Ye, Andy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 438
container_issue 4
container_start_page 427
container_title Integration (Amsterdam)
container_volume 45
creator Vasiljevic, Jasmina
Ye, Andy
description Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding standard. The algorithm can significantly increase the compression ratio of video encoders while improving video quality. However, it is computationally expensive and can consist of over 45% of the total motion estimation runtime. To maximize the performance and utilization of FME implementations on Field-Programmable Gate Arrays (FPGAs), one needs to effectively exploit the inherent parallelism in the algorithm. In this work, we explore two approaches to FME algorithm parallelization in order to effectively increase the processing power of the computing hardware. We call the first method vertical scaling and the second horizontal scaling. We implemented six scaled FME designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. We found that scaling vertically within a 4×4 sub-block is more efficient than scaling horizontally across several sub-blocks. As a result, we were able to achieve higher video resolutions at lower hardware resource cost. In particular, it is shown that the best vertically scaled design can achieve 30fps of QSXGA video with 4 reference frames with only 25.5K LUTS and 28.7K registers. ► Explored Fractional Motion Estimation (FME) algorithm parallelization. ► Implemented six scaled designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. ► Found that scaling vertically within a 4×4 sub-block is more efficient. ► Scaling horizontally across several sub-blocks is less efficient. ► Best vertically scaled design achieves 30fps at QSXGA with 4 reference frames.
doi_str_mv 10.1016/j.vlsi.2011.11.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136563409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167926011001064</els_id><sourcerecordid>1136563409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-ddaf7c686dd255afd8376cfd52fd484104f2e00c94cc7ca9266eaf771f2d83b43</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4Cobwc2MSSaTdMBNKWqFghvdCSHNT02ZTmoyLfTtvWOLS-FC7uKcc3M-hG4pKSmh4mFd7tscSkYoLWEIlWdoRCeSFbJm7ByNQCSLhglyia5yXhNCKJf1CH1OO90ecshYdxbrZL5C70y_Sw5bl8Oqw9HjbHSrl63DPmnThwgWvInDgl3uw0b_rj4mPC-Z4Nh1JtrQra7Rhddtdjend4w-np_eZ_Ni8fbyOpsuCsOJ7AtrtZdGTIS1rK61t5NKCuNtzbzlE04J98wRYhpujDQaWggHDkk9A-mSV2N0f8zdpvi9gy-pTcjGta3uXNxlRWklalFx0oCUHaUmxZyT82qboEA6KErUgFKt1YBSDSjBqAAlmO5O-XpAARQ6E_Kfk4mqYrIZwh-POgdl98EllU0AGM6GBFCVjeG_Mz8jR4rl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136563409</pqid></control><display><type>article</type><title>Analysis and architecture design of scalable fractional motion estimation for H.264 encoding</title><source>Elsevier ScienceDirect Journals</source><creator>Vasiljevic, Jasmina ; Ye, Andy</creator><creatorcontrib>Vasiljevic, Jasmina ; Ye, Andy</creatorcontrib><description>Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding standard. The algorithm can significantly increase the compression ratio of video encoders while improving video quality. However, it is computationally expensive and can consist of over 45% of the total motion estimation runtime. To maximize the performance and utilization of FME implementations on Field-Programmable Gate Arrays (FPGAs), one needs to effectively exploit the inherent parallelism in the algorithm. In this work, we explore two approaches to FME algorithm parallelization in order to effectively increase the processing power of the computing hardware. We call the first method vertical scaling and the second horizontal scaling. We implemented six scaled FME designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. We found that scaling vertically within a 4×4 sub-block is more efficient than scaling horizontally across several sub-blocks. As a result, we were able to achieve higher video resolutions at lower hardware resource cost. In particular, it is shown that the best vertically scaled design can achieve 30fps of QSXGA video with 4 reference frames with only 25.5K LUTS and 28.7K registers. ► Explored Fractional Motion Estimation (FME) algorithm parallelization. ► Implemented six scaled designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. ► Found that scaling vertically within a 4×4 sub-block is more efficient. ► Scaling horizontally across several sub-blocks is less efficient. ► Best vertically scaled design achieves 30fps at QSXGA with 4 reference frames.</description><identifier>ISSN: 0167-9260</identifier><identifier>EISSN: 1872-7522</identifier><identifier>DOI: 10.1016/j.vlsi.2011.11.017</identifier><identifier>CODEN: IVJODL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; Architecture ; Circuit properties ; Coders ; Computation ; Design engineering ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Encoders ; Encoding ; Exact sciences and technology ; Field-programmable gate arrays ; Fractional motion estimation ; H.264 ; Hardware ; Scalability ; Signal convertors</subject><ispartof>Integration (Amsterdam), 2012-09, Vol.45 (4), p.427-438</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-ddaf7c686dd255afd8376cfd52fd484104f2e00c94cc7ca9266eaf771f2d83b43</citedby><cites>FETCH-LOGICAL-c407t-ddaf7c686dd255afd8376cfd52fd484104f2e00c94cc7ca9266eaf771f2d83b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vlsi.2011.11.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26332799$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasiljevic, Jasmina</creatorcontrib><creatorcontrib>Ye, Andy</creatorcontrib><title>Analysis and architecture design of scalable fractional motion estimation for H.264 encoding</title><title>Integration (Amsterdam)</title><description>Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding standard. The algorithm can significantly increase the compression ratio of video encoders while improving video quality. However, it is computationally expensive and can consist of over 45% of the total motion estimation runtime. To maximize the performance and utilization of FME implementations on Field-Programmable Gate Arrays (FPGAs), one needs to effectively exploit the inherent parallelism in the algorithm. In this work, we explore two approaches to FME algorithm parallelization in order to effectively increase the processing power of the computing hardware. We call the first method vertical scaling and the second horizontal scaling. We implemented six scaled FME designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. We found that scaling vertically within a 4×4 sub-block is more efficient than scaling horizontally across several sub-blocks. As a result, we were able to achieve higher video resolutions at lower hardware resource cost. In particular, it is shown that the best vertically scaled design can achieve 30fps of QSXGA video with 4 reference frames with only 25.5K LUTS and 28.7K registers. ► Explored Fractional Motion Estimation (FME) algorithm parallelization. ► Implemented six scaled designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. ► Found that scaling vertically within a 4×4 sub-block is more efficient. ► Scaling horizontally across several sub-blocks is less efficient. ► Best vertically scaled design achieves 30fps at QSXGA with 4 reference frames.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Circuit properties</subject><subject>Coders</subject><subject>Computation</subject><subject>Design engineering</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Encoders</subject><subject>Encoding</subject><subject>Exact sciences and technology</subject><subject>Field-programmable gate arrays</subject><subject>Fractional motion estimation</subject><subject>H.264</subject><subject>Hardware</subject><subject>Scalability</subject><subject>Signal convertors</subject><issn>0167-9260</issn><issn>1872-7522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4Cobwc2MSSaTdMBNKWqFghvdCSHNT02ZTmoyLfTtvWOLS-FC7uKcc3M-hG4pKSmh4mFd7tscSkYoLWEIlWdoRCeSFbJm7ByNQCSLhglyia5yXhNCKJf1CH1OO90ecshYdxbrZL5C70y_Sw5bl8Oqw9HjbHSrl63DPmnThwgWvInDgl3uw0b_rj4mPC-Z4Nh1JtrQra7Rhddtdjend4w-np_eZ_Ni8fbyOpsuCsOJ7AtrtZdGTIS1rK61t5NKCuNtzbzlE04J98wRYhpujDQaWggHDkk9A-mSV2N0f8zdpvi9gy-pTcjGta3uXNxlRWklalFx0oCUHaUmxZyT82qboEA6KErUgFKt1YBSDSjBqAAlmO5O-XpAARQ6E_Kfk4mqYrIZwh-POgdl98EllU0AGM6GBFCVjeG_Mz8jR4rl</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Vasiljevic, Jasmina</creator><creator>Ye, Andy</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Analysis and architecture design of scalable fractional motion estimation for H.264 encoding</title><author>Vasiljevic, Jasmina ; Ye, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-ddaf7c686dd255afd8376cfd52fd484104f2e00c94cc7ca9266eaf771f2d83b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Circuit properties</topic><topic>Coders</topic><topic>Computation</topic><topic>Design engineering</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Encoders</topic><topic>Encoding</topic><topic>Exact sciences and technology</topic><topic>Field-programmable gate arrays</topic><topic>Fractional motion estimation</topic><topic>H.264</topic><topic>Hardware</topic><topic>Scalability</topic><topic>Signal convertors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasiljevic, Jasmina</creatorcontrib><creatorcontrib>Ye, Andy</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Integration (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasiljevic, Jasmina</au><au>Ye, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and architecture design of scalable fractional motion estimation for H.264 encoding</atitle><jtitle>Integration (Amsterdam)</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>45</volume><issue>4</issue><spage>427</spage><epage>438</epage><pages>427-438</pages><issn>0167-9260</issn><eissn>1872-7522</eissn><coden>IVJODL</coden><abstract>Fractional Motion Estimation (FME) is an important part of the H.264/AVC video encoding standard. The algorithm can significantly increase the compression ratio of video encoders while improving video quality. However, it is computationally expensive and can consist of over 45% of the total motion estimation runtime. To maximize the performance and utilization of FME implementations on Field-Programmable Gate Arrays (FPGAs), one needs to effectively exploit the inherent parallelism in the algorithm. In this work, we explore two approaches to FME algorithm parallelization in order to effectively increase the processing power of the computing hardware. We call the first method vertical scaling and the second horizontal scaling. We implemented six scaled FME designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. We found that scaling vertically within a 4×4 sub-block is more efficient than scaling horizontally across several sub-blocks. As a result, we were able to achieve higher video resolutions at lower hardware resource cost. In particular, it is shown that the best vertically scaled design can achieve 30fps of QSXGA video with 4 reference frames with only 25.5K LUTS and 28.7K registers. ► Explored Fractional Motion Estimation (FME) algorithm parallelization. ► Implemented six scaled designs on a Xilinx XC5VLX85T (Virtex-5) FPGA. ► Found that scaling vertically within a 4×4 sub-block is more efficient. ► Scaling horizontally across several sub-blocks is less efficient. ► Best vertically scaled design achieves 30fps at QSXGA with 4 reference frames.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.vlsi.2011.11.017</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9260
ispartof Integration (Amsterdam), 2012-09, Vol.45 (4), p.427-438
issn 0167-9260
1872-7522
language eng
recordid cdi_proquest_miscellaneous_1136563409
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Architecture
Circuit properties
Coders
Computation
Design engineering
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Encoders
Encoding
Exact sciences and technology
Field-programmable gate arrays
Fractional motion estimation
H.264
Hardware
Scalability
Signal convertors
title Analysis and architecture design of scalable fractional motion estimation for H.264 encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20architecture%20design%20of%20scalable%20fractional%20motion%20estimation%20for%20H.264%20encoding&rft.jtitle=Integration%20(Amsterdam)&rft.au=Vasiljevic,%20Jasmina&rft.date=2012-09-01&rft.volume=45&rft.issue=4&rft.spage=427&rft.epage=438&rft.pages=427-438&rft.issn=0167-9260&rft.eissn=1872-7522&rft.coden=IVJODL&rft_id=info:doi/10.1016/j.vlsi.2011.11.017&rft_dat=%3Cproquest_cross%3E1136563409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136563409&rft_id=info:pmid/&rft_els_id=S0167926011001064&rfr_iscdi=true