Influence diagnostics in linear and nonlinear mixed-effects models with censored data

HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays, and consequently the responses are either left or right censored. Linear and nonlinear mixed-effects models, with modifications to accommodate censoring (LMEC and NLMEC),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2013-01, Vol.57 (1), p.450-464
Hauptverfasser: Matos, Larissa A., Lachos, Victor H., Balakrishnan, N., Labra, Filidor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 1
container_start_page 450
container_title Computational statistics & data analysis
container_volume 57
creator Matos, Larissa A.
Lachos, Victor H.
Balakrishnan, N.
Labra, Filidor V.
description HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays, and consequently the responses are either left or right censored. Linear and nonlinear mixed-effects models, with modifications to accommodate censoring (LMEC and NLMEC), are routinely used to analyze this type of data. Recently, Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC, called the SAGE algorithm (Meng and Van Dyk, 1997), that uses closed-form expressions at the E-step, as opposed to Monte Carlo simulations. Motivated by this algorithm, we propose here an exact ECM algorithm (Meng and Rubin, 1993) for LMEC/NLMEC, which enables us to develop local influence analysis for mixed-effects models on the basis of conditional expectation of the complete-data log-likelihood function. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex which makes it difficult to directly apply the approach of Cook (1977, 1986). Some useful perturbation schemes are also discussed. Finally, the results obtained from the analyses of two HIV AIDS studies on viral loads are presented to illustrate the newly developed methodology.
doi_str_mv 10.1016/j.csda.2012.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136562724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947312002629</els_id><sourcerecordid>1136562724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a978e87d3786356933326f6f2f74c459b45d26b723345aed33b097b2b2f588a33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR2InEhtU8ahUiQ1dW449BleJXeyUx9-TqKxZje7o3JHmIHRNSUkJFbe70mSrS0YoK4koCaMnaEEbyQrJa3aKFhMki7aS_Bxd5LwjhLBKNgu0XQfXHyAYwNbrtxDz6E3GPuDeB9AJ62BxiOEvDf4bbAHOgRkzHqKFPuMvP75jAyHHBBZbPepLdOZ0n-Hqby7R9vHhdfVcbF6e1qv7TWE452OhW9lAIy2XjeC1aKclE0445mRlqrrtqtoy0UnGeVVrsJx3pJUd65irm0ZzvkQ3x7v7FD8OkEc1-Gyg73WAeMiKUi5qwSSrJpQdUZNizgmc2ic_6PSjKFGzQ7VTs0M1O1REqMnhVLo7lqY34dNDUtn4WZb1aTKgbPT_1X8Bj3F6Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136562724</pqid></control><display><type>article</type><title>Influence diagnostics in linear and nonlinear mixed-effects models with censored data</title><source>Elsevier ScienceDirect Journals</source><creator>Matos, Larissa A. ; Lachos, Victor H. ; Balakrishnan, N. ; Labra, Filidor V.</creator><creatorcontrib>Matos, Larissa A. ; Lachos, Victor H. ; Balakrishnan, N. ; Labra, Filidor V.</creatorcontrib><description>HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays, and consequently the responses are either left or right censored. Linear and nonlinear mixed-effects models, with modifications to accommodate censoring (LMEC and NLMEC), are routinely used to analyze this type of data. Recently, Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC, called the SAGE algorithm (Meng and Van Dyk, 1997), that uses closed-form expressions at the E-step, as opposed to Monte Carlo simulations. Motivated by this algorithm, we propose here an exact ECM algorithm (Meng and Rubin, 1993) for LMEC/NLMEC, which enables us to develop local influence analysis for mixed-effects models on the basis of conditional expectation of the complete-data log-likelihood function. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex which makes it difficult to directly apply the approach of Cook (1977, 1986). Some useful perturbation schemes are also discussed. Finally, the results obtained from the analyses of two HIV AIDS studies on viral loads are presented to illustrate the newly developed methodology.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2012.06.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Censored data ; Computer simulation ; EM algorithm ; Exact solutions ; HIV ; HIV viral load ; Influential observations ; Linear and nonlinear mixed models ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Nonlinearity</subject><ispartof>Computational statistics &amp; data analysis, 2013-01, Vol.57 (1), p.450-464</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a978e87d3786356933326f6f2f74c459b45d26b723345aed33b097b2b2f588a33</citedby><cites>FETCH-LOGICAL-c333t-a978e87d3786356933326f6f2f74c459b45d26b723345aed33b097b2b2f588a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947312002629$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Labra, Filidor V.</creatorcontrib><title>Influence diagnostics in linear and nonlinear mixed-effects models with censored data</title><title>Computational statistics &amp; data analysis</title><description>HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays, and consequently the responses are either left or right censored. Linear and nonlinear mixed-effects models, with modifications to accommodate censoring (LMEC and NLMEC), are routinely used to analyze this type of data. Recently, Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC, called the SAGE algorithm (Meng and Van Dyk, 1997), that uses closed-form expressions at the E-step, as opposed to Monte Carlo simulations. Motivated by this algorithm, we propose here an exact ECM algorithm (Meng and Rubin, 1993) for LMEC/NLMEC, which enables us to develop local influence analysis for mixed-effects models on the basis of conditional expectation of the complete-data log-likelihood function. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex which makes it difficult to directly apply the approach of Cook (1977, 1986). Some useful perturbation schemes are also discussed. Finally, the results obtained from the analyses of two HIV AIDS studies on viral loads are presented to illustrate the newly developed methodology.</description><subject>Algorithms</subject><subject>Censored data</subject><subject>Computer simulation</subject><subject>EM algorithm</subject><subject>Exact solutions</subject><subject>HIV</subject><subject>HIV viral load</subject><subject>Influential observations</subject><subject>Linear and nonlinear mixed models</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Nonlinearity</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR2InEhtU8ahUiQ1dW449BleJXeyUx9-TqKxZje7o3JHmIHRNSUkJFbe70mSrS0YoK4koCaMnaEEbyQrJa3aKFhMki7aS_Bxd5LwjhLBKNgu0XQfXHyAYwNbrtxDz6E3GPuDeB9AJ62BxiOEvDf4bbAHOgRkzHqKFPuMvP75jAyHHBBZbPepLdOZ0n-Hqby7R9vHhdfVcbF6e1qv7TWE452OhW9lAIy2XjeC1aKclE0445mRlqrrtqtoy0UnGeVVrsJx3pJUd65irm0ZzvkQ3x7v7FD8OkEc1-Gyg73WAeMiKUi5qwSSrJpQdUZNizgmc2ic_6PSjKFGzQ7VTs0M1O1REqMnhVLo7lqY34dNDUtn4WZb1aTKgbPT_1X8Bj3F6Bg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Matos, Larissa A.</creator><creator>Lachos, Victor H.</creator><creator>Balakrishnan, N.</creator><creator>Labra, Filidor V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Influence diagnostics in linear and nonlinear mixed-effects models with censored data</title><author>Matos, Larissa A. ; Lachos, Victor H. ; Balakrishnan, N. ; Labra, Filidor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a978e87d3786356933326f6f2f74c459b45d26b723345aed33b097b2b2f588a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Censored data</topic><topic>Computer simulation</topic><topic>EM algorithm</topic><topic>Exact solutions</topic><topic>HIV</topic><topic>HIV viral load</topic><topic>Influential observations</topic><topic>Linear and nonlinear mixed models</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><creatorcontrib>Balakrishnan, N.</creatorcontrib><creatorcontrib>Labra, Filidor V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matos, Larissa A.</au><au>Lachos, Victor H.</au><au>Balakrishnan, N.</au><au>Labra, Filidor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence diagnostics in linear and nonlinear mixed-effects models with censored data</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2013-01</date><risdate>2013</risdate><volume>57</volume><issue>1</issue><spage>450</spage><epage>464</epage><pages>450-464</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays, and consequently the responses are either left or right censored. Linear and nonlinear mixed-effects models, with modifications to accommodate censoring (LMEC and NLMEC), are routinely used to analyze this type of data. Recently, Vaida and Liu (2009) proposed an exact EM-type algorithm for LMEC/NLMEC, called the SAGE algorithm (Meng and Van Dyk, 1997), that uses closed-form expressions at the E-step, as opposed to Monte Carlo simulations. Motivated by this algorithm, we propose here an exact ECM algorithm (Meng and Rubin, 1993) for LMEC/NLMEC, which enables us to develop local influence analysis for mixed-effects models on the basis of conditional expectation of the complete-data log-likelihood function. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex which makes it difficult to directly apply the approach of Cook (1977, 1986). Some useful perturbation schemes are also discussed. Finally, the results obtained from the analyses of two HIV AIDS studies on viral loads are presented to illustrate the newly developed methodology.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2012.06.021</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2013-01, Vol.57 (1), p.450-464
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1136562724
source Elsevier ScienceDirect Journals
subjects Algorithms
Censored data
Computer simulation
EM algorithm
Exact solutions
HIV
HIV viral load
Influential observations
Linear and nonlinear mixed models
Mathematical analysis
Mathematical models
Monte Carlo methods
Nonlinearity
title Influence diagnostics in linear and nonlinear mixed-effects models with censored data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20diagnostics%20in%20linear%20and%20nonlinear%20mixed-effects%20models%20with%20censored%20data&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Matos,%20Larissa%20A.&rft.date=2013-01&rft.volume=57&rft.issue=1&rft.spage=450&rft.epage=464&rft.pages=450-464&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2012.06.021&rft_dat=%3Cproquest_cross%3E1136562724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136562724&rft_id=info:pmid/&rft_els_id=S0167947312002629&rfr_iscdi=true