Implementation of a direct procedure for critical point computations using preconditioned iterative solvers
Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of sol...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2012-10, Vol.108-109, p.110-117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | Computers & structures |
container_volume | 108-109 |
creator | Kouhia, Reijo Tůma, Miroslav Mäkinen, Jari Fedoroff, Alexis Marjamäki, Heikki |
description | Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution. |
doi_str_mv | 10.1016/j.compstruc.2012.02.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136561722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912000466</els_id><sourcerecordid>1136561722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BnP00jpJuv04LosfCwte9Byy6USytk1N0gX_vVkrXoWBgZn3neF9CLllkDNg5f0h164fQ_STzjkwnkMqaM7IgtVVk3FeiHOyAChWWdUUzSW5CuEAAGUBsCAf237ssMchqmjdQJ2hirbWo4509E5jO3mkxnmqvY1Wq46Ozg6Rnp5OsynQKdjhPelRu6G1pxm21Eb0aX9EGlx3RB-uyYVRXcCb374kb48Pr5vnbPfytN2sd5kWRR0zs6pbwzQINFiKPYiV5so0vFQCRFXyulVCC9xzVnNRq3YvTF0wAK6LuqmEEEtyN99NAT4nDFH2NmjsOjWgm4JkTJSrklWcJ2k1S7V3IXg0cvS2V_5LMpAnvPIg__DKE14JqaBJzvXsxJTkaNHLoC0OCdgPPNk6---Nb8KjivU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136561722</pqid></control><display><type>article</type><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</creator><creatorcontrib>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</creatorcontrib><description>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.02.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Critical point ; Critical points ; Eigenvalues ; Equilibrium equations ; Mathematical analysis ; Mathematical models ; Non-linear eigenvalue problem ; Normalizing ; Preconditioned iterations ; Solvers ; Strategy</subject><ispartof>Computers & structures, 2012-10, Vol.108-109, p.110-117</ispartof><rights>2012 Civil-Comp Ltd. and Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</citedby><cites>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2012.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Kouhia, Reijo</creatorcontrib><creatorcontrib>Tůma, Miroslav</creatorcontrib><creatorcontrib>Mäkinen, Jari</creatorcontrib><creatorcontrib>Fedoroff, Alexis</creatorcontrib><creatorcontrib>Marjamäki, Heikki</creatorcontrib><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><title>Computers & structures</title><description>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</description><subject>Bifurcations</subject><subject>Critical point</subject><subject>Critical points</subject><subject>Eigenvalues</subject><subject>Equilibrium equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-linear eigenvalue problem</subject><subject>Normalizing</subject><subject>Preconditioned iterations</subject><subject>Solvers</subject><subject>Strategy</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BnP00jpJuv04LosfCwte9Byy6USytk1N0gX_vVkrXoWBgZn3neF9CLllkDNg5f0h164fQ_STzjkwnkMqaM7IgtVVk3FeiHOyAChWWdUUzSW5CuEAAGUBsCAf237ssMchqmjdQJ2hirbWo4509E5jO3mkxnmqvY1Wq46Ozg6Rnp5OsynQKdjhPelRu6G1pxm21Eb0aX9EGlx3RB-uyYVRXcCb374kb48Pr5vnbPfytN2sd5kWRR0zs6pbwzQINFiKPYiV5so0vFQCRFXyulVCC9xzVnNRq3YvTF0wAK6LuqmEEEtyN99NAT4nDFH2NmjsOjWgm4JkTJSrklWcJ2k1S7V3IXg0cvS2V_5LMpAnvPIg__DKE14JqaBJzvXsxJTkaNHLoC0OCdgPPNk6---Nb8KjivU</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kouhia, Reijo</creator><creator>Tůma, Miroslav</creator><creator>Mäkinen, Jari</creator><creator>Fedoroff, Alexis</creator><creator>Marjamäki, Heikki</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><author>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bifurcations</topic><topic>Critical point</topic><topic>Critical points</topic><topic>Eigenvalues</topic><topic>Equilibrium equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-linear eigenvalue problem</topic><topic>Normalizing</topic><topic>Preconditioned iterations</topic><topic>Solvers</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouhia, Reijo</creatorcontrib><creatorcontrib>Tůma, Miroslav</creatorcontrib><creatorcontrib>Mäkinen, Jari</creatorcontrib><creatorcontrib>Fedoroff, Alexis</creatorcontrib><creatorcontrib>Marjamäki, Heikki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouhia, Reijo</au><au>Tůma, Miroslav</au><au>Mäkinen, Jari</au><au>Fedoroff, Alexis</au><au>Marjamäki, Heikki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</atitle><jtitle>Computers & structures</jtitle><date>2012-10</date><risdate>2012</risdate><volume>108-109</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.02.009</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2012-10, Vol.108-109, p.110-117 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136561722 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bifurcations Critical point Critical points Eigenvalues Equilibrium equations Mathematical analysis Mathematical models Non-linear eigenvalue problem Normalizing Preconditioned iterations Solvers Strategy |
title | Implementation of a direct procedure for critical point computations using preconditioned iterative solvers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20direct%20procedure%20for%20critical%20point%20computations%20using%20preconditioned%20iterative%20solvers&rft.jtitle=Computers%20&%20structures&rft.au=Kouhia,%20Reijo&rft.date=2012-10&rft.volume=108-109&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.02.009&rft_dat=%3Cproquest_cross%3E1136561722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136561722&rft_id=info:pmid/&rft_els_id=S0045794912000466&rfr_iscdi=true |