Implementation of a direct procedure for critical point computations using preconditioned iterative solvers

Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2012-10, Vol.108-109, p.110-117
Hauptverfasser: Kouhia, Reijo, Tůma, Miroslav, Mäkinen, Jari, Fedoroff, Alexis, Marjamäki, Heikki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 110
container_title Computers & structures
container_volume 108-109
creator Kouhia, Reijo
Tůma, Miroslav
Mäkinen, Jari
Fedoroff, Alexis
Marjamäki, Heikki
description Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.
doi_str_mv 10.1016/j.compstruc.2012.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136561722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912000466</els_id><sourcerecordid>1136561722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BnP00jpJuv04LosfCwte9Byy6USytk1N0gX_vVkrXoWBgZn3neF9CLllkDNg5f0h164fQ_STzjkwnkMqaM7IgtVVk3FeiHOyAChWWdUUzSW5CuEAAGUBsCAf237ssMchqmjdQJ2hirbWo4509E5jO3mkxnmqvY1Wq46Ozg6Rnp5OsynQKdjhPelRu6G1pxm21Eb0aX9EGlx3RB-uyYVRXcCb374kb48Pr5vnbPfytN2sd5kWRR0zs6pbwzQINFiKPYiV5so0vFQCRFXyulVCC9xzVnNRq3YvTF0wAK6LuqmEEEtyN99NAT4nDFH2NmjsOjWgm4JkTJSrklWcJ2k1S7V3IXg0cvS2V_5LMpAnvPIg__DKE14JqaBJzvXsxJTkaNHLoC0OCdgPPNk6---Nb8KjivU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136561722</pqid></control><display><type>article</type><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</creator><creatorcontrib>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</creatorcontrib><description>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.02.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Critical point ; Critical points ; Eigenvalues ; Equilibrium equations ; Mathematical analysis ; Mathematical models ; Non-linear eigenvalue problem ; Normalizing ; Preconditioned iterations ; Solvers ; Strategy</subject><ispartof>Computers &amp; structures, 2012-10, Vol.108-109, p.110-117</ispartof><rights>2012 Civil-Comp Ltd. and Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</citedby><cites>FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2012.02.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Kouhia, Reijo</creatorcontrib><creatorcontrib>Tůma, Miroslav</creatorcontrib><creatorcontrib>Mäkinen, Jari</creatorcontrib><creatorcontrib>Fedoroff, Alexis</creatorcontrib><creatorcontrib>Marjamäki, Heikki</creatorcontrib><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><title>Computers &amp; structures</title><description>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</description><subject>Bifurcations</subject><subject>Critical point</subject><subject>Critical points</subject><subject>Eigenvalues</subject><subject>Equilibrium equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-linear eigenvalue problem</subject><subject>Normalizing</subject><subject>Preconditioned iterations</subject><subject>Solvers</subject><subject>Strategy</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BnP00jpJuv04LosfCwte9Byy6USytk1N0gX_vVkrXoWBgZn3neF9CLllkDNg5f0h164fQ_STzjkwnkMqaM7IgtVVk3FeiHOyAChWWdUUzSW5CuEAAGUBsCAf237ssMchqmjdQJ2hirbWo4509E5jO3mkxnmqvY1Wq46Ozg6Rnp5OsynQKdjhPelRu6G1pxm21Eb0aX9EGlx3RB-uyYVRXcCb374kb48Pr5vnbPfytN2sd5kWRR0zs6pbwzQINFiKPYiV5so0vFQCRFXyulVCC9xzVnNRq3YvTF0wAK6LuqmEEEtyN99NAT4nDFH2NmjsOjWgm4JkTJSrklWcJ2k1S7V3IXg0cvS2V_5LMpAnvPIg__DKE14JqaBJzvXsxJTkaNHLoC0OCdgPPNk6---Nb8KjivU</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kouhia, Reijo</creator><creator>Tůma, Miroslav</creator><creator>Mäkinen, Jari</creator><creator>Fedoroff, Alexis</creator><creator>Marjamäki, Heikki</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201210</creationdate><title>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</title><author>Kouhia, Reijo ; Tůma, Miroslav ; Mäkinen, Jari ; Fedoroff, Alexis ; Marjamäki, Heikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f58df1c03efe63b035c2af926a3037628da3c3eb218238adb3f841002c4897333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bifurcations</topic><topic>Critical point</topic><topic>Critical points</topic><topic>Eigenvalues</topic><topic>Equilibrium equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-linear eigenvalue problem</topic><topic>Normalizing</topic><topic>Preconditioned iterations</topic><topic>Solvers</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouhia, Reijo</creatorcontrib><creatorcontrib>Tůma, Miroslav</creatorcontrib><creatorcontrib>Mäkinen, Jari</creatorcontrib><creatorcontrib>Fedoroff, Alexis</creatorcontrib><creatorcontrib>Marjamäki, Heikki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouhia, Reijo</au><au>Tůma, Miroslav</au><au>Mäkinen, Jari</au><au>Fedoroff, Alexis</au><au>Marjamäki, Heikki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a direct procedure for critical point computations using preconditioned iterative solvers</atitle><jtitle>Computers &amp; structures</jtitle><date>2012-10</date><risdate>2012</risdate><volume>108-109</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>Computation of critical points on an equilibrium path requires the solution of a non-linear eigenvalue problem. These critical points could be either bifurcation or limit points. When the external load is parametrized by a single parameter, the non-linear stability eigenvalue problem consists of solving the equilibrium equations along the criticality condition. Several techniques exist for solution of such a system. Their algorithmic treatment is usually focused for direct linear solvers and thus use the block elimination strategy. In this paper special emphasis is given for a strategy which can be used also with iterative linear solvers. Comparison to the block elimination strategy with direct linear solvers is given. Due to the non-uniqueness of the critical eigenmode a normalizing condition is required. In addition, for bifurcation points, the Jacobian matrix of the augmented system is singular at the critical point and additional stabilization is required in order to maintain the quadratic convergence of the Newton’s method. Depending on the normalizing condition, convergence to a critical point with negative load parameter value can happen. The form of the normalizing equation is critically discussed. Due to the slenderness of the buckling sensitive structures the resulting matrices are ill-conditioned and a good preconditioner is mandatory for efficient solution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.02.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2012-10, Vol.108-109, p.110-117
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_1136561722
source Access via ScienceDirect (Elsevier)
subjects Bifurcations
Critical point
Critical points
Eigenvalues
Equilibrium equations
Mathematical analysis
Mathematical models
Non-linear eigenvalue problem
Normalizing
Preconditioned iterations
Solvers
Strategy
title Implementation of a direct procedure for critical point computations using preconditioned iterative solvers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20direct%20procedure%20for%20critical%20point%20computations%20using%20preconditioned%20iterative%20solvers&rft.jtitle=Computers%20&%20structures&rft.au=Kouhia,%20Reijo&rft.date=2012-10&rft.volume=108-109&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.02.009&rft_dat=%3Cproquest_cross%3E1136561722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136561722&rft_id=info:pmid/&rft_els_id=S0045794912000466&rfr_iscdi=true