Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations

► Nonexistence of periodic solutions to fractional differential equations is firstly shown. ► Existence and uniqueness of S(Sv)-asymptotically T-periodic solutions to fractional differential equations are presented. ► More interesting results are extended to a subset of a Fréchet space. Using the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2013-02, Vol.18 (2), p.246-256
Hauptverfasser: Wang, JinRong, Fec˘kan, Michal, Zhou, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 2
container_start_page 246
container_title Communications in nonlinear science & numerical simulation
container_volume 18
creator Wang, JinRong
Fec˘kan, Michal
Zhou, Yong
description ► Nonexistence of periodic solutions to fractional differential equations is firstly shown. ► Existence and uniqueness of S(Sv)-asymptotically T-periodic solutions to fractional differential equations are presented. ► More interesting results are extended to a subset of a Fréchet space. Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Fréchet space. Some examples are given to illustrate the results.
doi_str_mv 10.1016/j.cnsns.2012.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136551902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570412002948</els_id><sourcerecordid>1136551902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e0561f3c3c18081072ca394f6718ca9e092506c44ee1e924bdbadbe91aeb78d53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjF7BkZEk4x06cDAyo4kuqYIHZcpyz5Cq1W9tB9N-TtIyI6e6Vnvekewi5oVBQoPXdutAuuliUQMsCRAHAT8iCNqLJRSn46bQDiLwSwM_JRYxrmFptxRfEvXmH3zYmdBozb7ItBut7q7PohzFZ72KmXJ-puN9sk09Wq2HY_0UZHzITlJ6TGrLeGoMBXbJTwN2oDtQVOTNqiHj9Oy_J59Pjx_IlX70_vy4fVrlmrE45QlVTwzTTtIGGgii1Yi03taCNVi1CW1ZQa84RKbYl7_pO9R22VGEnmr5il-T2eHcb_G7EmOTGRo3DoBz6MUpKWV1VtIVyQtkR1cHHGNDIbbAbFfaSgpztyrU82JWzXQlCTnan1v2xhdMXXxaDjNrODnsbUCfZe_tv_wcJzYfp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136551902</pqid></control><display><type>article</type><title>Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, JinRong ; Fec˘kan, Michal ; Zhou, Yong</creator><creatorcontrib>Wang, JinRong ; Fec˘kan, Michal ; Zhou, Yong</creatorcontrib><description>► Nonexistence of periodic solutions to fractional differential equations is firstly shown. ► Existence and uniqueness of S(Sv)-asymptotically T-periodic solutions to fractional differential equations are presented. ► More interesting results are extended to a subset of a Fréchet space. Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Fréchet space. Some examples are given to illustrate the results.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2012.07.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Asymptotically periodic solution ; Cauchy problem ; Computer simulation ; Differential equations ; Existence ; Fractional differential equations ; Laplace transforms ; Mathematical models ; Periodic functions ; Uniqueness</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2013-02, Vol.18 (2), p.246-256</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e0561f3c3c18081072ca394f6718ca9e092506c44ee1e924bdbadbe91aeb78d53</citedby><cites>FETCH-LOGICAL-c336t-e0561f3c3c18081072ca394f6718ca9e092506c44ee1e924bdbadbe91aeb78d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2012.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Fec˘kan, Michal</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><title>Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>► Nonexistence of periodic solutions to fractional differential equations is firstly shown. ► Existence and uniqueness of S(Sv)-asymptotically T-periodic solutions to fractional differential equations are presented. ► More interesting results are extended to a subset of a Fréchet space. Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Fréchet space. Some examples are given to illustrate the results.</description><subject>Asymptotic properties</subject><subject>Asymptotically periodic solution</subject><subject>Cauchy problem</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Existence</subject><subject>Fractional differential equations</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Periodic functions</subject><subject>Uniqueness</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjF7BkZEk4x06cDAyo4kuqYIHZcpyz5Cq1W9tB9N-TtIyI6e6Vnvekewi5oVBQoPXdutAuuliUQMsCRAHAT8iCNqLJRSn46bQDiLwSwM_JRYxrmFptxRfEvXmH3zYmdBozb7ItBut7q7PohzFZ72KmXJ-puN9sk09Wq2HY_0UZHzITlJ6TGrLeGoMBXbJTwN2oDtQVOTNqiHj9Oy_J59Pjx_IlX70_vy4fVrlmrE45QlVTwzTTtIGGgii1Yi03taCNVi1CW1ZQa84RKbYl7_pO9R22VGEnmr5il-T2eHcb_G7EmOTGRo3DoBz6MUpKWV1VtIVyQtkR1cHHGNDIbbAbFfaSgpztyrU82JWzXQlCTnan1v2xhdMXXxaDjNrODnsbUCfZe_tv_wcJzYfp</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Wang, JinRong</creator><creator>Fec˘kan, Michal</creator><creator>Zhou, Yong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201302</creationdate><title>Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations</title><author>Wang, JinRong ; Fec˘kan, Michal ; Zhou, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e0561f3c3c18081072ca394f6718ca9e092506c44ee1e924bdbadbe91aeb78d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Asymptotically periodic solution</topic><topic>Cauchy problem</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Existence</topic><topic>Fractional differential equations</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Periodic functions</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Fec˘kan, Michal</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, JinRong</au><au>Fec˘kan, Michal</au><au>Zhou, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2013-02</date><risdate>2013</risdate><volume>18</volume><issue>2</issue><spage>246</spage><epage>256</epage><pages>246-256</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>► Nonexistence of periodic solutions to fractional differential equations is firstly shown. ► Existence and uniqueness of S(Sv)-asymptotically T-periodic solutions to fractional differential equations are presented. ► More interesting results are extended to a subset of a Fréchet space. Using the final value theorem of Laplace transform, it is firstly shown that nonhomogeneous fractional Cauchy problem does not have nonzero periodic solution. Secondly, two basic existence and uniqueness results for asymptotically periodic solution of semilinear fractional Cauchy problem in an asymptotically periodic functions space. Furthermore, existence and uniqueness results are extended to a closed, nonempty and convex set which is a subset of a Fréchet space. Some examples are given to illustrate the results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2012.07.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2013-02, Vol.18 (2), p.246-256
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_1136551902
source Access via ScienceDirect (Elsevier)
subjects Asymptotic properties
Asymptotically periodic solution
Cauchy problem
Computer simulation
Differential equations
Existence
Fractional differential equations
Laplace transforms
Mathematical models
Periodic functions
Uniqueness
title Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonexistence%20of%20periodic%20solutions%20and%20asymptotically%20periodic%20solutions%20for%20fractional%20differential%20equations&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Wang,%20JinRong&rft.date=2013-02&rft.volume=18&rft.issue=2&rft.spage=246&rft.epage=256&rft.pages=246-256&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2012.07.004&rft_dat=%3Cproquest_cross%3E1136551902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136551902&rft_id=info:pmid/&rft_els_id=S1007570412002948&rfr_iscdi=true