High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer

[Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2012-11, Vol.99, p.43-49
Hauptverfasser: Frommhold, Andreas, Robinson, Alex P.G., Tarte, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 43
container_title Microelectronic engineering
container_volume 99
creator Frommhold, Andreas
Robinson, Alex P.G.
Tarte, Edward
description [Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions. Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.
doi_str_mv 10.1016/j.mee.2012.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136550459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931712002699</els_id><sourcerecordid>1136550459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhB3DzBYlLgp3EdiJOqKIUqRIXOFteZ9ydJbGDx0XaM38cb7fiyMlj-5s3em8YeytFK4XUH47tCtB2Qnat0K0Q4zO2k6PpG6X0-JztKmOaqZfmJXtFdBT1Pohxx_7c4v2BO9rAF55dwcQJF_QpchdnvqXlhCvOwKOLacNlcZn4_sR9WvcYz3zkKTz-0naADHzBckj32W2H06MExgJ5hRldAb46-sk3V-pT5CW7SAHya_YiuIXgzdN5xX7cfP5-fdvcffvy9frTXeMH0Zem7zoBKshpkjrMUk0OzDgG74OSozfgpRT7IXRe70GbYRhDcL0C00-mC12tr9j7i-6W068HoGJXJA_VU4T0QFbKXislBjVVVF5QnxNRhmC3jKvLJyuFPQduj7YGbs-BW6FtDbz2vHuSd-TdEqo7j_SvsdODEcoMlft44aB6_Y2QLXmE6GtEuW7Bzgn_M-UvJjWZGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136550459</pqid></control><display><type>article</type><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><source>Access via ScienceDirect (Elsevier)</source><creator>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</creator><creatorcontrib>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</creatorcontrib><description>[Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions. Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2012.06.008</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Etching ; Exact sciences and technology ; Hardmask ; High aspect ratio ; ICP etching ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Masks ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Nanocomposites ; Nanomaterials ; Nanopillars ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Nanospheres ; Nanostructure ; Physics ; Polyimide resins ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Surface treatments</subject><ispartof>Microelectronic engineering, 2012-11, Vol.99, p.43-49</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</citedby><cites>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2012.06.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26470574$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Frommhold, Andreas</creatorcontrib><creatorcontrib>Robinson, Alex P.G.</creatorcontrib><creatorcontrib>Tarte, Edward</creatorcontrib><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><title>Microelectronic engineering</title><description>[Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions. Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Hardmask</subject><subject>High aspect ratio</subject><subject>ICP etching</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Masks</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanopillars</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polyimide resins</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Surface treatments</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhB3DzBYlLgp3EdiJOqKIUqRIXOFteZ9ydJbGDx0XaM38cb7fiyMlj-5s3em8YeytFK4XUH47tCtB2Qnat0K0Q4zO2k6PpG6X0-JztKmOaqZfmJXtFdBT1Pohxx_7c4v2BO9rAF55dwcQJF_QpchdnvqXlhCvOwKOLacNlcZn4_sR9WvcYz3zkKTz-0naADHzBckj32W2H06MExgJ5hRldAb46-sk3V-pT5CW7SAHya_YiuIXgzdN5xX7cfP5-fdvcffvy9frTXeMH0Zem7zoBKshpkjrMUk0OzDgG74OSozfgpRT7IXRe70GbYRhDcL0C00-mC12tr9j7i-6W068HoGJXJA_VU4T0QFbKXislBjVVVF5QnxNRhmC3jKvLJyuFPQduj7YGbs-BW6FtDbz2vHuSd-TdEqo7j_SvsdODEcoMlft44aB6_Y2QLXmE6GtEuW7Bzgn_M-UvJjWZGQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Frommhold, Andreas</creator><creator>Robinson, Alex P.G.</creator><creator>Tarte, Edward</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><author>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Hardmask</topic><topic>High aspect ratio</topic><topic>ICP etching</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Masks</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanopillars</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polyimide resins</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frommhold, Andreas</creatorcontrib><creatorcontrib>Robinson, Alex P.G.</creatorcontrib><creatorcontrib>Tarte, Edward</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frommhold, Andreas</au><au>Robinson, Alex P.G.</au><au>Tarte, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</atitle><jtitle>Microelectronic engineering</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>99</volume><spage>43</spage><epage>49</epage><pages>43-49</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions. Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2012.06.008</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2012-11, Vol.99, p.43-49
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_1136550459
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Electronics
Etching
Exact sciences and technology
Hardmask
High aspect ratio
ICP etching
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Masks
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microelectronic fabrication (materials and surfaces technology)
Nanocomposites
Nanomaterials
Nanopillars
Nanopowders
Nanoscale materials and structures: fabrication and characterization
Nanospheres
Nanostructure
Physics
Polyimide resins
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Surface treatments
title High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20aspect%20ratio%20silicon%20and%20polyimide%20nanopillars%20by%20combination%20of%20nanosphere%20lithography%20and%20intermediate%20mask%20pattern%20transfer&rft.jtitle=Microelectronic%20engineering&rft.au=Frommhold,%20Andreas&rft.date=2012-11-01&rft.volume=99&rft.spage=43&rft.epage=49&rft.pages=43-49&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2012.06.008&rft_dat=%3Cproquest_cross%3E1136550459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136550459&rft_id=info:pmid/&rft_els_id=S0167931712002699&rfr_iscdi=true