High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer
[Display omitted] ► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2012-11, Vol.99, p.43-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | |
container_start_page | 43 |
container_title | Microelectronic engineering |
container_volume | 99 |
creator | Frommhold, Andreas Robinson, Alex P.G. Tarte, Edward |
description | [Display omitted]
► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions.
Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter. |
doi_str_mv | 10.1016/j.mee.2012.06.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136550459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931712002699</els_id><sourcerecordid>1136550459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhB3DzBYlLgp3EdiJOqKIUqRIXOFteZ9ydJbGDx0XaM38cb7fiyMlj-5s3em8YeytFK4XUH47tCtB2Qnat0K0Q4zO2k6PpG6X0-JztKmOaqZfmJXtFdBT1Pohxx_7c4v2BO9rAF55dwcQJF_QpchdnvqXlhCvOwKOLacNlcZn4_sR9WvcYz3zkKTz-0naADHzBckj32W2H06MExgJ5hRldAb46-sk3V-pT5CW7SAHya_YiuIXgzdN5xX7cfP5-fdvcffvy9frTXeMH0Zem7zoBKshpkjrMUk0OzDgG74OSozfgpRT7IXRe70GbYRhDcL0C00-mC12tr9j7i-6W068HoGJXJA_VU4T0QFbKXislBjVVVF5QnxNRhmC3jKvLJyuFPQduj7YGbs-BW6FtDbz2vHuSd-TdEqo7j_SvsdODEcoMlft44aB6_Y2QLXmE6GtEuW7Bzgn_M-UvJjWZGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136550459</pqid></control><display><type>article</type><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><source>Access via ScienceDirect (Elsevier)</source><creator>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</creator><creatorcontrib>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</creatorcontrib><description>[Display omitted]
► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions.
Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2012.06.008</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Etching ; Exact sciences and technology ; Hardmask ; High aspect ratio ; ICP etching ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Masks ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microelectronic fabrication (materials and surfaces technology) ; Nanocomposites ; Nanomaterials ; Nanopillars ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Nanospheres ; Nanostructure ; Physics ; Polyimide resins ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Surface treatments</subject><ispartof>Microelectronic engineering, 2012-11, Vol.99, p.43-49</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</citedby><cites>FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2012.06.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26470574$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Frommhold, Andreas</creatorcontrib><creatorcontrib>Robinson, Alex P.G.</creatorcontrib><creatorcontrib>Tarte, Edward</creatorcontrib><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><title>Microelectronic engineering</title><description>[Display omitted]
► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions.
Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Hardmask</subject><subject>High aspect ratio</subject><subject>ICP etching</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Masks</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanopillars</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanospheres</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Polyimide resins</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Surface treatments</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhB3DzBYlLgp3EdiJOqKIUqRIXOFteZ9ydJbGDx0XaM38cb7fiyMlj-5s3em8YeytFK4XUH47tCtB2Qnat0K0Q4zO2k6PpG6X0-JztKmOaqZfmJXtFdBT1Pohxx_7c4v2BO9rAF55dwcQJF_QpchdnvqXlhCvOwKOLacNlcZn4_sR9WvcYz3zkKTz-0naADHzBckj32W2H06MExgJ5hRldAb46-sk3V-pT5CW7SAHya_YiuIXgzdN5xX7cfP5-fdvcffvy9frTXeMH0Zem7zoBKshpkjrMUk0OzDgG74OSozfgpRT7IXRe70GbYRhDcL0C00-mC12tr9j7i-6W068HoGJXJA_VU4T0QFbKXislBjVVVF5QnxNRhmC3jKvLJyuFPQduj7YGbs-BW6FtDbz2vHuSd-TdEqo7j_SvsdODEcoMlft44aB6_Y2QLXmE6GtEuW7Bzgn_M-UvJjWZGQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Frommhold, Andreas</creator><creator>Robinson, Alex P.G.</creator><creator>Tarte, Edward</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</title><author>Frommhold, Andreas ; Robinson, Alex P.G. ; Tarte, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3220e5f19916fd159ae788fccf518c7ec110b4f2c6be67448ffa35e73972f2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Hardmask</topic><topic>High aspect ratio</topic><topic>ICP etching</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Masks</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanopillars</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanospheres</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Polyimide resins</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frommhold, Andreas</creatorcontrib><creatorcontrib>Robinson, Alex P.G.</creatorcontrib><creatorcontrib>Tarte, Edward</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frommhold, Andreas</au><au>Robinson, Alex P.G.</au><au>Tarte, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer</atitle><jtitle>Microelectronic engineering</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>99</volume><spage>43</spage><epage>49</epage><pages>43-49</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted]
► Novel multilayer mask stack for high aspect ratio etching using nanosphere lithography. ► Silicon nanopillars with 75nm diameter and an aspect ratio of 17. ► High aspect ratio polyimide nanopillars with sub-100nm diameter. ► Silicon pillar covered surface showed superhydrophilic properties under repeated wetting conditions.
Silicon and polymer nanopillar structures with sub-100nm diameter and high aspect ratios were fabricated using a modified nanosphere lithography process. A thin silicon film was sputtered onto spin-coated polyimide films. A self-assembled layer of nanospheres was then formed on the silicon. Reactive ion etching with SF6/C4F8 was used to transfer the nanosphere pattern to the silicon. Oxygen plasma etching then transferred the silicon pattern into the polymer to create nanopillars. The nanopillar diameter could be finely tuned by oxygen plasma thinning of the nanospheres and the conditions for silicon mask etching. In the last step the polyimide pillars served as etch masks to transfer the structures back into the silicon substrate to give well-ordered pillars of 1.3μm height and 75nm diameter.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2012.06.008</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2012-11, Vol.99, p.43-49 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136550459 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Electronics Etching Exact sciences and technology Hardmask High aspect ratio ICP etching Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Masks Materials science Methods of deposition of films and coatings film growth and epitaxy Microelectronic fabrication (materials and surfaces technology) Nanocomposites Nanomaterials Nanopillars Nanopowders Nanoscale materials and structures: fabrication and characterization Nanospheres Nanostructure Physics Polyimide resins Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Surface treatments |
title | High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20aspect%20ratio%20silicon%20and%20polyimide%20nanopillars%20by%20combination%20of%20nanosphere%20lithography%20and%20intermediate%20mask%20pattern%20transfer&rft.jtitle=Microelectronic%20engineering&rft.au=Frommhold,%20Andreas&rft.date=2012-11-01&rft.volume=99&rft.spage=43&rft.epage=49&rft.pages=43-49&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2012.06.008&rft_dat=%3Cproquest_cross%3E1136550459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136550459&rft_id=info:pmid/&rft_els_id=S0167931712002699&rfr_iscdi=true |