A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED

A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica solida Sinica 2012-08, Vol.25 (4), p.361-376
Hauptverfasser: Hu, Dawei, Zhou, Hui, Hu, Qizhi, Shao, Jianfu, Feng, Xiating, Xiao, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 4
container_start_page 361
container_title Acta mechanica solida Sinica
container_volume 25
creator Hu, Dawei
Zhou, Hui
Hu, Qizhi
Shao, Jianfu
Feng, Xiating
Xiao, Haibin
description A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.
doi_str_mv 10.1016/S0894-9166(12)60033-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136549271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43220091</cqvip_id><els_id>S0894916612600330</els_id><sourcerecordid>1136549271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-4caf0d2c05063b009a4c46475ff468ba05c2086a7efbdbdc618875b4766ec9ea3</originalsourceid><addsrcrecordid>eNqFkF1vmzAUhq1qk5q1_QmV2F13wXr8gYGriYETkEKo8qFqVxYY0xEl0OBk0v79nKTKLnNjW_L7vMd-EHrE8B0D5s8LCELmhpjzJ0y-cQBKXbhBIxxwcAmm7BMaXSK36IsxawACNCAj1EdO-iuZF24u4jSaZXE0deNU5MeDExerl2k2mzh5kYipMy7mzkQUebQU88xev2bL1PlZ2OU_7ESzxLkUJFEeTcTCFs0WWSLmIrlHn5tyY_TDx36HVmOxjFN3WkxOwxXD3t5lqmygJgo84LQCCEumGGe-1zSMB1UJniIQ8NLXTVVXteI4CHyvYj7nWoW6pHfo6dz7PvS7gzZ7uW2N0ptN2en-YCTGlHssJD62Ue8cVUNvzKAb-T6023L4KzHIo2B5EiyP9iQm8iRYguX4mTM2373pQa77w9DZX10Ff5xBbQX8aS1oVKs7pet20Gov67692vD148m_--5tZ6df3swoIdYXpv8AHSWT5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136549271</pqid></control><display><type>article</type><title>A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Dawei ; Zhou, Hui ; Hu, Qizhi ; Shao, Jianfu ; Feng, Xiating ; Xiao, Haibin</creator><creatorcontrib>Hu, Dawei ; Zhou, Hui ; Hu, Qizhi ; Shao, Jianfu ; Feng, Xiating ; Xiao, Haibin</creatorcontrib><description>A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.</description><identifier>ISSN: 0894-9166</identifier><identifier>EISSN: 1860-2134</identifier><identifier>DOI: 10.1016/S0894-9166(12)60033-0</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>chemical damage ; chemical kinetics ; Classical Mechanics ; Damage ; Dissolution ; Engineering ; Evolution ; Geomaterials ; hydro-mechanical-chemical coupling ; Joining ; Mathematical models ; mechanical damage ; Minerals ; Porosity ; sandstone ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; 化学降解 ; 土工材料 ; 损害 ; 有效应力 ; 机械负荷 ; 溶解机制 ; 矿物成分 ; 耦合模型</subject><ispartof>Acta mechanica solida Sinica, 2012-08, Vol.25 (4), p.361-376</ispartof><rights>2012 The Chinese Society of Theoretical and Applied Mechanics</rights><rights>The Chinese Society of Theoretical and Applied Mechanics and Technology 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-4caf0d2c05063b009a4c46475ff468ba05c2086a7efbdbdc618875b4766ec9ea3</citedby><cites>FETCH-LOGICAL-c415t-4caf0d2c05063b009a4c46475ff468ba05c2086a7efbdbdc618875b4766ec9ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87045X/87045X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S0894-9166(12)60033-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-9166(12)60033-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,41488,42557,45995,51319</link.rule.ids></links><search><creatorcontrib>Hu, Dawei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Hu, Qizhi</creatorcontrib><creatorcontrib>Shao, Jianfu</creatorcontrib><creatorcontrib>Feng, Xiating</creatorcontrib><creatorcontrib>Xiao, Haibin</creatorcontrib><title>A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED</title><title>Acta mechanica solida Sinica</title><addtitle>Acta Mech. Solida Sin</addtitle><addtitle>Acta Mechanica Solida Sinica</addtitle><description>A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.</description><subject>chemical damage</subject><subject>chemical kinetics</subject><subject>Classical Mechanics</subject><subject>Damage</subject><subject>Dissolution</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Geomaterials</subject><subject>hydro-mechanical-chemical coupling</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>mechanical damage</subject><subject>Minerals</subject><subject>Porosity</subject><subject>sandstone</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>化学降解</subject><subject>土工材料</subject><subject>损害</subject><subject>有效应力</subject><subject>机械负荷</subject><subject>溶解机制</subject><subject>矿物成分</subject><subject>耦合模型</subject><issn>0894-9166</issn><issn>1860-2134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkF1vmzAUhq1qk5q1_QmV2F13wXr8gYGriYETkEKo8qFqVxYY0xEl0OBk0v79nKTKLnNjW_L7vMd-EHrE8B0D5s8LCELmhpjzJ0y-cQBKXbhBIxxwcAmm7BMaXSK36IsxawACNCAj1EdO-iuZF24u4jSaZXE0deNU5MeDExerl2k2mzh5kYipMy7mzkQUebQU88xev2bL1PlZ2OU_7ESzxLkUJFEeTcTCFs0WWSLmIrlHn5tyY_TDx36HVmOxjFN3WkxOwxXD3t5lqmygJgo84LQCCEumGGe-1zSMB1UJniIQ8NLXTVVXteI4CHyvYj7nWoW6pHfo6dz7PvS7gzZ7uW2N0ptN2en-YCTGlHssJD62Ue8cVUNvzKAb-T6023L4KzHIo2B5EiyP9iQm8iRYguX4mTM2373pQa77w9DZX10Ff5xBbQX8aS1oVKs7pet20Gov67692vD148m_--5tZ6df3swoIdYXpv8AHSWT5Q</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Hu, Dawei</creator><creator>Zhou, Hui</creator><creator>Hu, Qizhi</creator><creator>Shao, Jianfu</creator><creator>Feng, Xiating</creator><creator>Xiao, Haibin</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120801</creationdate><title>A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED</title><author>Hu, Dawei ; Zhou, Hui ; Hu, Qizhi ; Shao, Jianfu ; Feng, Xiating ; Xiao, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-4caf0d2c05063b009a4c46475ff468ba05c2086a7efbdbdc618875b4766ec9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>chemical damage</topic><topic>chemical kinetics</topic><topic>Classical Mechanics</topic><topic>Damage</topic><topic>Dissolution</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Geomaterials</topic><topic>hydro-mechanical-chemical coupling</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>mechanical damage</topic><topic>Minerals</topic><topic>Porosity</topic><topic>sandstone</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>化学降解</topic><topic>土工材料</topic><topic>损害</topic><topic>有效应力</topic><topic>机械负荷</topic><topic>溶解机制</topic><topic>矿物成分</topic><topic>耦合模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Dawei</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Hu, Qizhi</creatorcontrib><creatorcontrib>Shao, Jianfu</creatorcontrib><creatorcontrib>Feng, Xiating</creatorcontrib><creatorcontrib>Xiao, Haibin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta mechanica solida Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Dawei</au><au>Zhou, Hui</au><au>Hu, Qizhi</au><au>Shao, Jianfu</au><au>Feng, Xiating</au><au>Xiao, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED</atitle><jtitle>Acta mechanica solida Sinica</jtitle><stitle>Acta Mech. Solida Sin</stitle><addtitle>Acta Mechanica Solida Sinica</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>25</volume><issue>4</issue><spage>361</spage><epage>376</epage><pages>361-376</pages><issn>0894-9166</issn><eissn>1860-2134</eissn><abstract>A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0894-9166(12)60033-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-9166
ispartof Acta mechanica solida Sinica, 2012-08, Vol.25 (4), p.361-376
issn 0894-9166
1860-2134
language eng
recordid cdi_proquest_miscellaneous_1136549271
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects chemical damage
chemical kinetics
Classical Mechanics
Damage
Dissolution
Engineering
Evolution
Geomaterials
hydro-mechanical-chemical coupling
Joining
Mathematical models
mechanical damage
Minerals
Porosity
sandstone
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thin Films
化学降解
土工材料
损害
有效应力
机械负荷
溶解机制
矿物成分
耦合模型
title A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HYDRO-MECHANICAL-CHEMICAL%20COUPLING%20MODEL%20FOR%20GEOMATERIAL%20WITH%20BOTH%20MECHANICAL%20AND%20CHEMICAL%20DAMAGES%20CONSIDERED&rft.jtitle=Acta%20mechanica%20solida%20Sinica&rft.au=Hu,%20Dawei&rft.date=2012-08-01&rft.volume=25&rft.issue=4&rft.spage=361&rft.epage=376&rft.pages=361-376&rft.issn=0894-9166&rft.eissn=1860-2134&rft_id=info:doi/10.1016/S0894-9166(12)60033-0&rft_dat=%3Cproquest_cross%3E1136549271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136549271&rft_id=info:pmid/&rft_cqvip_id=43220091&rft_els_id=S0894916612600330&rfr_iscdi=true