Limit cycles for two families of cubic systems
In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our re...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2012-12, Vol.75 (18), p.6402-6417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6417 |
---|---|
container_issue | 18 |
container_start_page | 6402 |
container_title | Nonlinear analysis |
container_volume | 75 |
creator | Álvarez, M.J. Gasull, A. Prohens, R. |
description | In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic. |
doi_str_mv | 10.1016/j.na.2012.07.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136547232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X12002908</els_id><sourcerecordid>1136547232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</originalsourceid><addsrcrecordid>eNp1kM9LxDAQhYMouK7ePfbopXWSaZLWmyy6CgteFLyFNJ1Alv5Yk66y_71d1qunD4b3PZjH2C2HggNX99tisIUALgrQxYwztuCVxlwKLs_ZAlCJXJbq85JdpbQFAK5RLVixCX2YMndwHaXMjzGbfsbM2z50YT6MPnP7JrgsHdJEfbpmF952iW7-uGQfz0_vq5d887Z-XT1ucoeqnnLnAaiuVFVyFLrVKCuhvVeNULZpkLxwUivXYCtR1BbqtvQl1r6pUPIKLC7Z3al3F8evPaXJ9CE56jo70LhPhnNUstQCxRyFU9TFMaVI3uxi6G08GA7mOI3ZmsGa4zQGtJkxKw8nheYXvgNFk1ygwVEbIrnJtGP4X_4FILZpcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136547232</pqid></control><display><type>article</type><title>Limit cycles for two families of cubic systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</creator><creatorcontrib>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</creatorcontrib><description>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2012.07.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Bifurcation ; Criteria ; Cubic system ; Kolmogorov system ; Limit cycle ; Mathematical models ; Nonlinearity ; Orbits ; Spiral galaxies ; Star formation ; Uniqueness</subject><ispartof>Nonlinear analysis, 2012-12, Vol.75 (18), p.6402-6417</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</citedby><cites>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X12002908$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Álvarez, M.J.</creatorcontrib><creatorcontrib>Gasull, A.</creatorcontrib><creatorcontrib>Prohens, R.</creatorcontrib><title>Limit cycles for two families of cubic systems</title><title>Nonlinear analysis</title><description>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</description><subject>Algebra</subject><subject>Bifurcation</subject><subject>Criteria</subject><subject>Cubic system</subject><subject>Kolmogorov system</subject><subject>Limit cycle</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Orbits</subject><subject>Spiral galaxies</subject><subject>Star formation</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LxDAQhYMouK7ePfbopXWSaZLWmyy6CgteFLyFNJ1Alv5Yk66y_71d1qunD4b3PZjH2C2HggNX99tisIUALgrQxYwztuCVxlwKLs_ZAlCJXJbq85JdpbQFAK5RLVixCX2YMndwHaXMjzGbfsbM2z50YT6MPnP7JrgsHdJEfbpmF952iW7-uGQfz0_vq5d887Z-XT1ucoeqnnLnAaiuVFVyFLrVKCuhvVeNULZpkLxwUivXYCtR1BbqtvQl1r6pUPIKLC7Z3al3F8evPaXJ9CE56jo70LhPhnNUstQCxRyFU9TFMaVI3uxi6G08GA7mOI3ZmsGa4zQGtJkxKw8nheYXvgNFk1ygwVEbIrnJtGP4X_4FILZpcw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Álvarez, M.J.</creator><creator>Gasull, A.</creator><creator>Prohens, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Limit cycles for two families of cubic systems</title><author>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Bifurcation</topic><topic>Criteria</topic><topic>Cubic system</topic><topic>Kolmogorov system</topic><topic>Limit cycle</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Orbits</topic><topic>Spiral galaxies</topic><topic>Star formation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez, M.J.</creatorcontrib><creatorcontrib>Gasull, A.</creatorcontrib><creatorcontrib>Prohens, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez, M.J.</au><au>Gasull, A.</au><au>Prohens, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit cycles for two families of cubic systems</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-12</date><risdate>2012</risdate><volume>75</volume><issue>18</issue><spage>6402</spage><epage>6417</epage><pages>6402-6417</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2012.07.012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2012-12, Vol.75 (18), p.6402-6417 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136547232 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algebra Bifurcation Criteria Cubic system Kolmogorov system Limit cycle Mathematical models Nonlinearity Orbits Spiral galaxies Star formation Uniqueness |
title | Limit cycles for two families of cubic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20cycles%20for%20two%20families%20of%20cubic%20systems&rft.jtitle=Nonlinear%20analysis&rft.au=%C3%81lvarez,%20M.J.&rft.date=2012-12&rft.volume=75&rft.issue=18&rft.spage=6402&rft.epage=6417&rft.pages=6402-6417&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2012.07.012&rft_dat=%3Cproquest_cross%3E1136547232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136547232&rft_id=info:pmid/&rft_els_id=S0362546X12002908&rfr_iscdi=true |