Limit cycles for two families of cubic systems

In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2012-12, Vol.75 (18), p.6402-6417
Hauptverfasser: Álvarez, M.J., Gasull, A., Prohens, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6417
container_issue 18
container_start_page 6402
container_title Nonlinear analysis
container_volume 75
creator Álvarez, M.J.
Gasull, A.
Prohens, R.
description In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.
doi_str_mv 10.1016/j.na.2012.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136547232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X12002908</els_id><sourcerecordid>1136547232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</originalsourceid><addsrcrecordid>eNp1kM9LxDAQhYMouK7ePfbopXWSaZLWmyy6CgteFLyFNJ1Alv5Yk66y_71d1qunD4b3PZjH2C2HggNX99tisIUALgrQxYwztuCVxlwKLs_ZAlCJXJbq85JdpbQFAK5RLVixCX2YMndwHaXMjzGbfsbM2z50YT6MPnP7JrgsHdJEfbpmF952iW7-uGQfz0_vq5d887Z-XT1ucoeqnnLnAaiuVFVyFLrVKCuhvVeNULZpkLxwUivXYCtR1BbqtvQl1r6pUPIKLC7Z3al3F8evPaXJ9CE56jo70LhPhnNUstQCxRyFU9TFMaVI3uxi6G08GA7mOI3ZmsGa4zQGtJkxKw8nheYXvgNFk1ygwVEbIrnJtGP4X_4FILZpcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136547232</pqid></control><display><type>article</type><title>Limit cycles for two families of cubic systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</creator><creatorcontrib>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</creatorcontrib><description>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2012.07.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Bifurcation ; Criteria ; Cubic system ; Kolmogorov system ; Limit cycle ; Mathematical models ; Nonlinearity ; Orbits ; Spiral galaxies ; Star formation ; Uniqueness</subject><ispartof>Nonlinear analysis, 2012-12, Vol.75 (18), p.6402-6417</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</citedby><cites>FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X12002908$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Álvarez, M.J.</creatorcontrib><creatorcontrib>Gasull, A.</creatorcontrib><creatorcontrib>Prohens, R.</creatorcontrib><title>Limit cycles for two families of cubic systems</title><title>Nonlinear analysis</title><description>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</description><subject>Algebra</subject><subject>Bifurcation</subject><subject>Criteria</subject><subject>Cubic system</subject><subject>Kolmogorov system</subject><subject>Limit cycle</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Orbits</subject><subject>Spiral galaxies</subject><subject>Star formation</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LxDAQhYMouK7ePfbopXWSaZLWmyy6CgteFLyFNJ1Alv5Yk66y_71d1qunD4b3PZjH2C2HggNX99tisIUALgrQxYwztuCVxlwKLs_ZAlCJXJbq85JdpbQFAK5RLVixCX2YMndwHaXMjzGbfsbM2z50YT6MPnP7JrgsHdJEfbpmF952iW7-uGQfz0_vq5d887Z-XT1ucoeqnnLnAaiuVFVyFLrVKCuhvVeNULZpkLxwUivXYCtR1BbqtvQl1r6pUPIKLC7Z3al3F8evPaXJ9CE56jo70LhPhnNUstQCxRyFU9TFMaVI3uxi6G08GA7mOI3ZmsGa4zQGtJkxKw8nheYXvgNFk1ygwVEbIrnJtGP4X_4FILZpcw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Álvarez, M.J.</creator><creator>Gasull, A.</creator><creator>Prohens, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Limit cycles for two families of cubic systems</title><author>Álvarez, M.J. ; Gasull, A. ; Prohens, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-cf00e986841327d735827ff6b26abb3ef2c576cb3d5329a09d4f439fb835180a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Bifurcation</topic><topic>Criteria</topic><topic>Cubic system</topic><topic>Kolmogorov system</topic><topic>Limit cycle</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Orbits</topic><topic>Spiral galaxies</topic><topic>Star formation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez, M.J.</creatorcontrib><creatorcontrib>Gasull, A.</creatorcontrib><creatorcontrib>Prohens, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez, M.J.</au><au>Gasull, A.</au><au>Prohens, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limit cycles for two families of cubic systems</atitle><jtitle>Nonlinear analysis</jtitle><date>2012-12</date><risdate>2012</risdate><volume>75</volume><issue>18</issue><spage>6402</spage><epage>6417</epage><pages>6402-6417</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we study the number of limit cycles of two families of cubic systems introduced in previous papers to model real phenomena. The first one is motivated by a model of star formation histories in giant spiral galaxies and the second one comes from a model of Volterra type. To prove our results we develop a new criterion on the non-existence of periodic orbits and we extend a well-known criterion on the uniqueness of limit cycles due to Kuang and Freedman. Both results allow to reduce the problem to the control of the sign of certain functions that are treated by algebraic tools. Moreover, in both cases, we prove that when the limit cycles exist they are non-algebraic.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2012.07.012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2012-12, Vol.75 (18), p.6402-6417
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1136547232
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Bifurcation
Criteria
Cubic system
Kolmogorov system
Limit cycle
Mathematical models
Nonlinearity
Orbits
Spiral galaxies
Star formation
Uniqueness
title Limit cycles for two families of cubic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limit%20cycles%20for%20two%20families%20of%20cubic%20systems&rft.jtitle=Nonlinear%20analysis&rft.au=%C3%81lvarez,%20M.J.&rft.date=2012-12&rft.volume=75&rft.issue=18&rft.spage=6402&rft.epage=6417&rft.pages=6402-6417&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2012.07.012&rft_dat=%3Cproquest_cross%3E1136547232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136547232&rft_id=info:pmid/&rft_els_id=S0362546X12002908&rfr_iscdi=true